A self-attention-based differentially private tabular GAN with high data
utility
- URL: http://arxiv.org/abs/2312.13031v1
- Date: Wed, 20 Dec 2023 13:55:56 GMT
- Title: A self-attention-based differentially private tabular GAN with high data
utility
- Authors: Zijian Li, Zhihui Wang
- Abstract summary: This paper introduces DP-SACTGAN, a Conditional Generative Adversarial Network (CGAN) framework for differentially private data generation.
Experimental findings demonstrate that DP-SACTGAN accurately models the distribution of the original data and effectively satisfies the requirements of differential privacy.
- Score: 23.99149917513586
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative Adversarial Networks (GANs) have become a ubiquitous technology
for data generation, with their prowess in image generation being
well-established. However, their application in generating tabular data has
been less than ideal. Furthermore, attempting to incorporate differential
privacy technology into these frameworks has often resulted in a degradation of
data utility. To tackle these challenges, this paper introduces DP-SACTGAN, a
novel Conditional Generative Adversarial Network (CGAN) framework for
differentially private tabular data generation, aiming to surmount these
obstacles. Experimental findings demonstrate that DP-SACTGAN not only
accurately models the distribution of the original data but also effectively
satisfies the requirements of differential privacy.
Related papers
- Federated Learning Empowered by Generative Content [55.576885852501775]
Federated learning (FL) enables leveraging distributed private data for model training in a privacy-preserving way.
We propose a novel FL framework termed FedGC, designed to mitigate data heterogeneity issues by diversifying private data with generative content.
We conduct a systematic empirical study on FedGC, covering diverse baselines, datasets, scenarios, and modalities.
arXiv Detail & Related papers (2023-12-10T07:38:56Z) - Generating tabular datasets under differential privacy [0.0]
We introduce Differential Privacy (DP) into the training process of deep neural networks.
This creates a trade-off between the quality and privacy of the resulting data.
We implement novel end-to-end models that leverage attention mechanisms.
arXiv Detail & Related papers (2023-08-28T16:35:43Z) - CasTGAN: Cascaded Generative Adversarial Network for Realistic Tabular
Data Synthesis [0.4999814847776097]
Generative adversarial networks (GANs) have drawn considerable attention in recent years for their proven capability in generating synthetic data.
The validity of the synthetic data and the underlying privacy concerns represent major challenges which are not sufficiently addressed.
arXiv Detail & Related papers (2023-07-01T16:52:18Z) - PS-FedGAN: An Efficient Federated Learning Framework Based on Partially
Shared Generative Adversarial Networks For Data Privacy [56.347786940414935]
Federated Learning (FL) has emerged as an effective learning paradigm for distributed computation.
This work proposes a novel FL framework that requires only partial GAN model sharing.
Named as PS-FedGAN, this new framework enhances the GAN releasing and training mechanism to address heterogeneous data distributions.
arXiv Detail & Related papers (2023-05-19T05:39:40Z) - Private Set Generation with Discriminative Information [63.851085173614]
Differentially private data generation is a promising solution to the data privacy challenge.
Existing private generative models are struggling with the utility of synthetic samples.
We introduce a simple yet effective method that greatly improves the sample utility of state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-07T10:02:55Z) - Differentially Private Synthetic Medical Data Generation using
Convolutional GANs [7.2372051099165065]
We develop a differentially private framework for synthetic data generation using R'enyi differential privacy.
Our approach builds on convolutional autoencoders and convolutional generative adversarial networks to preserve some of the critical characteristics of the generated synthetic data.
We demonstrate that our model outperforms existing state-of-the-art models under the same privacy budget.
arXiv Detail & Related papers (2020-12-22T01:03:49Z) - imdpGAN: Generating Private and Specific Data with Generative
Adversarial Networks [19.377726080729293]
imdpGAN is an end-to-end framework that simultaneously achieves privacy protection and learns latent representations.
We show that imdpGAN preserves the privacy of the individual data point, and learns latent codes to control the specificity of the generated samples.
arXiv Detail & Related papers (2020-09-29T08:03:32Z) - Partially Conditioned Generative Adversarial Networks [75.08725392017698]
Generative Adversarial Networks (GANs) let one synthesise artificial datasets by implicitly modelling the underlying probability distribution of a real-world training dataset.
With the introduction of Conditional GANs and their variants, these methods were extended to generating samples conditioned on ancillary information available for each sample within the dataset.
In this work, we argue that standard Conditional GANs are not suitable for such a task and propose a new Adversarial Network architecture and training strategy.
arXiv Detail & Related papers (2020-07-06T15:59:28Z) - GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially
Private Generators [74.16405337436213]
We propose Gradient-sanitized Wasserstein Generative Adrial Networks (GS-WGAN)
GS-WGAN allows releasing a sanitized form of sensitive data with rigorous privacy guarantees.
We find our approach consistently outperforms state-of-the-art approaches across multiple metrics.
arXiv Detail & Related papers (2020-06-15T10:01:01Z) - On Leveraging Pretrained GANs for Generation with Limited Data [83.32972353800633]
generative adversarial networks (GANs) can generate highly realistic images, that are often indistinguishable (by humans) from real images.
Most images so generated are not contained in a training dataset, suggesting potential for augmenting training sets with GAN-generated data.
We leverage existing GAN models pretrained on large-scale datasets to introduce additional knowledge, following the concept of transfer learning.
An extensive set of experiments is presented to demonstrate the effectiveness of the proposed techniques on generation with limited data.
arXiv Detail & Related papers (2020-02-26T21:53:36Z) - DP-CGAN: Differentially Private Synthetic Data and Label Generation [18.485995499841]
We introduce a Differentially Private Conditional GAN (DP-CGAN) training framework based on a new clipping and perturbation strategy.
We show that DP-CGAN can generate visually and empirically promising results on the MNIST dataset with a single-digit epsilon parameter in differential privacy.
arXiv Detail & Related papers (2020-01-27T11:26:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.