Graphene: Infrastructure Security Posture Analysis with AI-generated Attack Graphs
- URL: http://arxiv.org/abs/2312.13119v2
- Date: Wed, 1 May 2024 01:59:20 GMT
- Title: Graphene: Infrastructure Security Posture Analysis with AI-generated Attack Graphs
- Authors: Xin Jin, Charalampos Katsis, Fan Sang, Jiahao Sun, Elisa Bertino, Ramana Rao Kompella, Ashish Kundu,
- Abstract summary: We propose Graphene, an advanced system designed to provide a detailed analysis of the security posture of computing infrastructures.
Using user-provided information, such as device details and software versions, Graphene performs a comprehensive security assessment.
The system takes a holistic approach by analyzing security layers encompassing hardware, system, network, and cryptography.
- Score: 14.210866237959708
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rampant occurrence of cybersecurity breaches imposes substantial limitations on the progress of network infrastructures, leading to compromised data, financial losses, potential harm to individuals, and disruptions in essential services. The current security landscape demands the urgent development of a holistic security assessment solution that encompasses vulnerability analysis and investigates the potential exploitation of these vulnerabilities as attack paths. In this paper, we propose Graphene, an advanced system designed to provide a detailed analysis of the security posture of computing infrastructures. Using user-provided information, such as device details and software versions, Graphene performs a comprehensive security assessment. This assessment includes identifying associated vulnerabilities and constructing potential attack graphs that adversaries can exploit. Furthermore, Graphene evaluates the exploitability of these attack paths and quantifies the overall security posture through a scoring mechanism. The system takes a holistic approach by analyzing security layers encompassing hardware, system, network, and cryptography. Furthermore, Graphene delves into the interconnections between these layers, exploring how vulnerabilities in one layer can be leveraged to exploit vulnerabilities in others. In this paper, we present the end-to-end pipeline implemented in Graphene, showcasing the systematic approach adopted for conducting this thorough security analysis.
Related papers
- SETC: A Vulnerability Telemetry Collection Framework [0.0]
This paper introduces the Security Exploit Telemetry Collection (SETC) framework.
SETC generates reproducible vulnerability exploit data at scale for robust defensive security research.
This research enables scalable exploit data generation to drive innovations in threat modeling, detection methods, analysis techniques, and strategies.
arXiv Detail & Related papers (2024-06-10T00:13:35Z) - Safety in Graph Machine Learning: Threats and Safeguards [84.26643884225834]
Despite their societal benefits, recent research highlights significant safety concerns associated with the widespread use of Graph ML models.
Lacking safety-focused designs, these models can produce unreliable predictions, demonstrate poor generalizability, and compromise data confidentiality.
In high-stakes scenarios such as financial fraud detection, these vulnerabilities could jeopardize both individuals and society at large.
arXiv Detail & Related papers (2024-05-17T18:11:11Z) - Profile of Vulnerability Remediations in Dependencies Using Graph
Analysis [40.35284812745255]
This research introduces graph analysis methods and a modified Graph Attention Convolutional Neural Network (GAT) model.
We analyze control flow graphs to profile breaking changes in applications occurring from dependency upgrades intended to remediate vulnerabilities.
Results demonstrate the effectiveness of the enhanced GAT model in offering nuanced insights into the relational dynamics of code vulnerabilities.
arXiv Detail & Related papers (2024-03-08T02:01:47Z) - It Is Time To Steer: A Scalable Framework for Analysis-driven Attack Graph Generation [50.06412862964449]
Attack Graph (AG) represents the best-suited solution to support cyber risk assessment for multi-step attacks on computer networks.
Current solutions propose to address the generation problem from the algorithmic perspective and postulate the analysis only after the generation is complete.
This paper rethinks the classic AG analysis through a novel workflow in which the analyst can query the system anytime.
arXiv Detail & Related papers (2023-12-27T10:44:58Z) - HW-V2W-Map: Hardware Vulnerability to Weakness Mapping Framework for
Root Cause Analysis with GPT-assisted Mitigation Suggestion [3.847218857469107]
We presentHW-V2W-Map Framework, which is a Machine Learning (ML) framework focusing on hardware vulnerabilities and Internet of Things (IoT) security.
The architecture that we have proposed incorporates an Ontology-driven Storytelling framework, which automates the process of updating the Ontology.
Our proposed framework utilized Generative Pre-trained Transformer (GPT) Large Language Models (LLMs) to provide mitigation suggestions.
arXiv Detail & Related papers (2023-12-21T02:14:41Z) - Using Program Knowledge Graph to Uncover Software Vulnerabilities [0.0]
A knowledge graph constructed with information extracted from the system along with the desired security behavior can be utilized to identify complex security vulnerabilities hidden underneath the systems.
We present a novel approach of using Program Knowledge Graph that is embedded with fine-grained execution information of the systems.
arXiv Detail & Related papers (2023-12-08T03:38:43Z) - Leveraging Traceability to Integrate Safety Analysis Artifacts into the
Software Development Process [51.42800587382228]
Safety assurance cases (SACs) can be challenging to maintain during system evolution.
We propose a solution that leverages software traceability to connect relevant system artifacts to safety analysis models.
We elicit design rationales for system changes to help safety stakeholders analyze the impact of system changes on safety.
arXiv Detail & Related papers (2023-07-14T16:03:27Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
The explosive growth of cyber attacks nowadays, such as malware, spam, and intrusions, caused severe consequences on society.
Traditional Machine Learning (ML) based methods are extensively used in detecting cyber threats, but they hardly model the correlations between real-world cyber entities.
With the proliferation of graph mining techniques, many researchers investigated these techniques for capturing correlations between cyber entities and achieving high performance.
arXiv Detail & Related papers (2023-04-02T08:43:03Z) - Automated Security Assessment for the Internet of Things [6.690766107366799]
We propose an automated security assessment framework for IoT networks.
Our framework first leverages machine learning and natural language processing to analyze vulnerability descriptions.
This security model automatically assesses the security of the IoT network by capturing potential attack paths.
arXiv Detail & Related papers (2021-09-09T04:42:24Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
Despite great potential, machine learning in security is prone to subtle pitfalls that undermine its performance.
We identify common pitfalls in the design, implementation, and evaluation of learning-based security systems.
We propose actionable recommendations to support researchers in avoiding or mitigating the pitfalls where possible.
arXiv Detail & Related papers (2020-10-19T13:09:31Z) - Graph Backdoor [53.70971502299977]
We present GTA, the first backdoor attack on graph neural networks (GNNs)
GTA departs in significant ways: it defines triggers as specific subgraphs, including both topological structures and descriptive features.
It can be instantiated for both transductive (e.g., node classification) and inductive (e.g., graph classification) tasks.
arXiv Detail & Related papers (2020-06-21T19:45:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.