論文の概要: SPDGAN: A Generative Adversarial Network based on SPD Manifold Learning for Automatic Image Colorization
- arxiv url: http://arxiv.org/abs/2312.13506v2
- Date: Tue, 25 Feb 2025 12:42:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-26 15:19:41.863770
- Title: SPDGAN: A Generative Adversarial Network based on SPD Manifold Learning for Automatic Image Colorization
- Title(参考訳): SPDGAN:自動画像カラー化のためのSPDマニフォールド学習に基づくジェネレーティブ・アドバイサル・ネットワーク
- Authors: Youssef Mourchid, Marc Donias, Yannick Berthoumieu, Mohamed Najim,
- Abstract要約: 生成逆ネットワーク(SPDGAN)を用いたSymmetric Positive Definite (SPD) Manifold Learningに基づく完全自動カラー化手法を提案する。
本モデルは,2つの識別器とジェネレータの対角ゲームを確立する。その目標は,残差接続により層間の色情報を失うことなく,偽のカラー化画像を生成することである。
- 参考スコア(独自算出の注目度): 1.1174586184779576
- License:
- Abstract: This paper addresses the automatic colorization problem, which converts a gray-scale image to a colorized one. Recent deep-learning approaches can colorize automatically grayscale images. However, when it comes to different scenes which contain distinct color styles, it is difficult to accurately capture the color characteristics. In this work, we propose a fully automatic colorization approach based on Symmetric Positive Definite (SPD) Manifold Learning with a generative adversarial network (SPDGAN) that improves the quality of the colorization results. Our SPDGAN model establishes an adversarial game between two discriminators and a generator. The latter is based on ResNet architecture with few alterations. Its goal is to generate fake colorized images without losing color information across layers through residual connections. Then, we employ two discriminators from different domains. The first one is devoted to the image pixel domain, while the second one is to the Riemann manifold domain which helps to avoid color misalignment. Extensive experiments are conducted on the Places365 and COCO-stuff databases to test the effect of each component of our SPDGAN. In addition, quantitative and qualitative comparisons with state-of-the-art methods demonstrate the effectiveness of our model by achieving more realistic colorized images with less artifacts visually, and good results of PSNR, SSIM, and FID values.
- Abstract(参考訳): 本稿では、グレースケール画像からカラー化画像に変換する自動着色問題に対処する。
最近のディープラーニングアプローチは、自動的にグレースケールのイメージを着色することができる。
しかし、異なる色調の異なる場面では、色の特徴を正確に捉えることは困難である。
本研究では,SPD(Symmetric Positive Definite) Manifold Learning with a Generative Adversarial Network (SPDGAN) に基づく完全自動カラー化手法を提案する。
我々のSPDGANモデルは、2つの識別器とジェネレータの対角ゲームを確立する。
後者は、変更の少ないResNetアーキテクチャに基づいている。
その目標は、残差接続によって層間の色情報を失うことなく、偽のカラー画像を生成することである。
そして、異なるドメインから2つの識別器を採用。
1つはイメージピクセル領域に、もう1つはリーマン多様体領域に、色ずれを避けるのに役立つ。
SPDGANの各成分の効果を調べるため,Places365およびCOCO-stuffデータベース上で大規模な実験を行った。
さらに,PSNR,SSIM,FID値の良質な結果と,よりリアルな色付け画像を視覚的に少ない画像で実現することで,最先端の手法と定量的・定性的な比較を行い,本モデルの有効性を実証した。
関連論文リスト
- Color-Quality Invariance for Robust Medical Image Segmentation [4.710921988115686]
単一ソース領域の一般化は、医療画像のセグメンテーションにおいて重要な課題である。
動的カラー画像正規化(DCIN)モジュールとカラー品質一般化(CQG)損失の2つの新しい手法を提案する。
論文 参考訳(メタデータ) (2025-02-11T02:47:37Z) - ColorFlow: Retrieval-Augmented Image Sequence Colorization [65.93834649502898]
産業用途における画像シーケンスのカラー化に適した3段階拡散に基づくフレームワークを提案する。
IDごとの微調整や明示的なID埋め込み抽出を必要とする既存の手法とは異なり、我々は新たにRetrieval Augmented Colorization Pipelineを提案する。
パイプラインには、カラーアイデンティティ抽出のためのブランチと、カラー化のためのブランチという、デュアルブランチ設計も備えています。
論文 参考訳(メタデータ) (2024-12-16T14:32:49Z) - Improved Diffusion-based Image Colorization via Piggybacked Models [19.807766482434563]
既存の強力なT2I拡散モデルに基づく色付けモデルを提案する。
拡散誘導器は、潜伏拡散モデルの事前訓練された重みを組み込むように設計されている。
次に、輝度認識VQVAEは、所定のグレースケール画像に画素完全アライメントされた色付き結果を生成する。
論文 参考訳(メタデータ) (2023-04-21T16:23:24Z) - Detecting Recolored Image by Spatial Correlation [60.08643417333974]
画像のリカラー化は、画像の色値を操作して新しいスタイルを与える、新たな編集技術である。
本稿では,空間相関の観点から,従来型と深層学習による再色検出の汎用的検出能力を示す解を探索する。
提案手法は,複数のベンチマークデータセット上での最先端検出精度を実現し,未知の種類の再色法を適切に一般化する。
論文 参考訳(メタデータ) (2022-04-23T01:54:06Z) - Transform your Smartphone into a DSLR Camera: Learning the ISP in the
Wild [159.71025525493354]
本稿では,スマートフォンが取得したRAW画像に基づいて,DSLRの品質画像を生成する訓練可能な画像信号処理フレームワークを提案する。
トレーニング画像ペア間の色ずれに対処するために、カラー条件ISPネットワークを使用し、各入力RAWと基準DSLR画像間の新しいパラメトリック色マッピングを最適化する。
論文 参考訳(メタデータ) (2022-03-20T20:13:59Z) - Astronomical Image Colorization and upscaling with Generative
Adversarial Networks [0.0]
本研究の目的は、非常に特定の画像領域、すなわち天文学的な画像に焦点をあてることにより、この問題に自動的アプローチを提供することである。
我々は、RGBとL*a*bという2つの異なる色空間における様々なモデルの使用について検討する。
このモデルは、画像に存在しない高解像度で色付けされたデータを幻覚させる視覚的に魅力的な画像を生成する。
論文 参考訳(メタデータ) (2021-12-27T19:01:20Z) - Semantic-Sparse Colorization Network for Deep Exemplar-based
Colorization [23.301799487207035]
模範的なカラー化アプローチは、対象のグレースケール画像に対して可視色を提供するために、参照画像に依存する。
本研究では,グローバルな画像スタイルとセマンティックな色の両方をグレースケールに転送するセマンティック・スパースカラー化ネットワーク(SSCN)を提案する。
我々のネットワークは、あいまいなマッチング問題を緩和しつつ、グローバルカラーとローカルカラーのバランスを完全にとることができる。
論文 参考訳(メタデータ) (2021-12-02T15:35:10Z) - HistoGAN: Controlling Colors of GAN-Generated and Real Images via Color
Histograms [52.77252727786091]
HistoGANは、GAN生成画像の色を制御するための色ヒストグラムに基づく方法である。
我々は、HistoGANを拡張して、実画像を再色する方法を示す。
論文 参考訳(メタデータ) (2020-11-23T21:14:19Z) - SCGAN: Saliency Map-guided Colorization with Generative Adversarial
Network [16.906813829260553]
本稿では,SCGAN(Generative Adversarial Network)フレームワークによる完全自動サリエンシマップ誘導色付けを提案する。
これは、意味的混乱と色出血を最小限に抑えるために、着色と塩分濃度マップを共同で予測する。
実験結果から,SCGANは最先端技術よりも,より合理的なカラー化画像を生成することができることがわかった。
論文 参考訳(メタデータ) (2020-11-23T13:06:54Z) - Instance-aware Image Colorization [51.12040118366072]
本稿では,インスタンス認識のカラー化を実現する手法を提案する。
我々のネットワークアーキテクチャは、市販のオブジェクト検出器を利用して、収穫されたオブジェクト画像を取得する。
類似したネットワークを用いて、フルイメージの特徴を抽出し、融合モジュールを適用して最終色を予測する。
論文 参考訳(メタデータ) (2020-05-21T17:59:23Z) - Learning to Structure an Image with Few Colors [59.34619548026885]
そこで,カラー量子化ネットワークであるColorCNNを提案する。
1ビットのカラースペース(すなわち2色)だけで、提案されたネットワークはCIFAR10データセット上で82.1%のトップ-1の精度を達成した。
アプリケーションの場合、PNGでエンコードされた場合、提案したカラー量子化は、極低ビットレート方式の他の画像圧縮方法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-03-17T17:56:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。