Optically heralded microwave photons
- URL: http://arxiv.org/abs/2210.10739v1
- Date: Wed, 19 Oct 2022 17:27:25 GMT
- Title: Optically heralded microwave photons
- Authors: Wentao Jiang, Felix M. Mayor, Sultan Malik, Rapha\"el Van Laer,
Timothy P. McKenna, Rishi N. Patel, Jeremy D. Witmer, and Amir H.
Safavi-Naeini
- Abstract summary: A quantum network that distributes and processes entanglement would enable powerful new computers and sensors.
Superconducting qubits operate naturally on microwave photons that have roughly $40,000$ times less energy.
We implement and demonstrate a transducer device that can generate entanglement between optical and microwave photons.
- Score: 1.606071974243323
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A quantum network that distributes and processes entanglement would enable
powerful new computers and sensors. Optical photons with a frequency of a few
hundred terahertz are perhaps the only way to distribute quantum information
over long distances. Superconducting qubits on the other hand, which are one of
the most promising approaches for realizing large-scale quantum machines,
operate naturally on microwave photons that have roughly $40,000$ times less
energy. To network these quantum machines across appreciable distances, we must
bridge this frequency gap and learn how to generate entanglement across widely
disparate parts of the electromagnetic spectrum. Here we implement and
demonstrate a transducer device that can generate entanglement between optical
and microwave photons, and use it to show that by detecting an optical photon
we add a single photon to the microwave field. We achieve this by using a
gigahertz nanomechanical resonance as an intermediary, and efficiently coupling
it to optical and microwave channels through strong optomechanical and
piezoelectric interactions. We show continuous operation of the transducer with
$5\%$ frequency conversion efficiency, and pulsed microwave photon generation
at a heralding rate of $15$ hertz. Optical absorption in the device generates
thermal noise of less than two microwave photons. Joint measurements on optical
photons from a pair of transducers would realize entanglement generation
between distant microwave-frequency quantum nodes. Improvements of the system
efficiency and device performance, necessary to realize a high rate of
entanglement generation in such networks are within reach.
Related papers
- Efficiently catching entangled microwave photons from a quantum transducer with shaped optical pumps [0.0]
Quantum transducer provides a practical way of coherently connecting optical communication channels and microwave quantum processors.
Recent experiments on quantum transducer verifying entanglement between microwave and optical photons show the promise of approaching that goal.
To efficiently capture or detect a single microwave photon with arbitrary time profile remains challenging.
arXiv Detail & Related papers (2024-09-09T23:31:15Z) - Quantum entanglement between optical and microwave photonic qubits [1.817633657275965]
Entanglement is an extraordinary feature of quantum mechanics.
Here we demonstrate a chip-scale source of entangled optical and microwave photonic qubits.
arXiv Detail & Related papers (2023-12-21T04:02:48Z) - Light-Induced Microwave Noise in Superconducting Microwave-Optical
Transducers [1.2874569408514918]
We study light-induced microwave noise in an integrated electro-optical transducer harnessing Pockels effect of thin film lithium niobate.
Our results gain insights into the mechanisms and corresponding mitigation strategies for light-induced microwave noise in superconducting microwave-optical transducers.
arXiv Detail & Related papers (2023-11-14T20:25:34Z) - Heralding entangled optical photons from a microwave quantum processor [0.0]
We propose and analyze a quantum architecture that leverages the non-local connectivity of optics, along with the exquisite quantum control offered by superconducting microwave circuits.
We use squeezing between microwaves and optics to produce microwave-optical Bell pairs in a dual-rail encoding from a single microwave quantum processor.
Our scheme paves the way for small microwave quantum processors to create heralded entangled optical resource states for optical quantum computation, communication, and sensing.
arXiv Detail & Related papers (2023-08-27T18:30:33Z) - A highly-sensitive broadband superconducting thermoelectric
single-photon detector [62.997667081978825]
A thermoelectric detector (TED) converts a finite temperature difference caused by the absorption of a single photon into an open circuit thermovoltage.
Our TED is able to reveal single-photons of frequency ranging from about 15 GHz to about 150 PHz depending on the chosen design and materials.
arXiv Detail & Related papers (2023-02-06T17:08:36Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - A Frequency-Multiplexed Coherent Electro-Optic Memory in Rare Earth
Doped Nanoparticles [94.37521840642141]
Quantum memories for light are essential components in quantum technologies like long-distance quantum communication and distributed quantum computing.
Recent studies have shown that long optical and spin coherence lifetimes can be observed in rare earth doped nanoparticles.
We report on coherent light storage in Eu$3+$:Y$$O$_3$ nanoparticles using the Stark Echo Modulation Memory (SEMM) quantum protocol.
arXiv Detail & Related papers (2020-06-17T13:25:54Z) - Frequency-Domain Quantum Interference with Correlated Photons from an
Integrated Microresonator [96.25398432840109]
We report frequency-domain Hong-Ou-Mandel interference with spectrally distinct photons generated from a chip-based microresonator.
Our work establishes four-wave mixing as a tool for selective high-fidelity two-photon operations in the frequency domain.
arXiv Detail & Related papers (2020-03-14T01:48:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.