論文の概要: Navigating the Structured What-If Spaces: Counterfactual Generation via
Structured Diffusion
- arxiv url: http://arxiv.org/abs/2312.13616v1
- Date: Thu, 21 Dec 2023 07:05:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-22 15:38:07.098265
- Title: Navigating the Structured What-If Spaces: Counterfactual Generation via
Structured Diffusion
- Title(参考訳): 構造空間をナビゲートする:構造拡散による対実生成
- Authors: Nishtha Madaan, Srikanta Bedathur
- Abstract要約: 本稿では,構造データ中の反現実的説明を生成するために拡散を利用した最初のプラグアンドプレイフレームワークであるStructured Counterfactual diffuser(SCD)を紹介する。
実験の結果, 既存の最先端技術と比較して高い妥当性を示すだけでなく, 近接性や多様性も著しく向上していることがわかった。
- 参考スコア(独自算出の注目度): 20.20945739504847
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generating counterfactual explanations is one of the most effective
approaches for uncovering the inner workings of black-box neural network models
and building user trust. While remarkable strides have been made in generative
modeling using diffusion models in domains like vision, their utility in
generating counterfactual explanations in structured modalities remains
unexplored. In this paper, we introduce Structured Counterfactual Diffuser or
SCD, the first plug-and-play framework leveraging diffusion for generating
counterfactual explanations in structured data. SCD learns the underlying data
distribution via a diffusion model which is then guided at test time to
generate counterfactuals for any arbitrary black-box model, input, and desired
prediction. Our experiments show that our counterfactuals not only exhibit high
plausibility compared to the existing state-of-the-art but also show
significantly better proximity and diversity.
- Abstract(参考訳): 対物的説明の生成は、ブラックボックスニューラルネットワークモデルの内部動作を明らかにし、ユーザ信頼を構築するための最も効果的なアプローチの1つである。
視覚のような領域での拡散モデルを用いた生成モデルでは顕著な進歩が見られるが、構造的モダリティにおける反実的説明の生成におけるそれらの有用性は未解明のままである。
本稿では,構造データ中の反現実的説明を生成するために拡散を利用した最初のプラグアンドプレイフレームワークであるStructured Counterfactual Diffuser(SCD)を紹介する。
scdは拡散モデルを通じて基礎となるデータ分布を学習し、テスト時に任意のブラックボックスモデル、入力、所望の予測に対する反事実を生成する。
実験の結果, 既存の最先端技術と比較して高い妥当性を示すだけでなく, 近接性や多様性も著しく向上していることがわかった。
関連論文リスト
- An Overview of Diffusion Models: Applications, Guided Generation, Statistical Rates and Optimization [59.63880337156392]
拡散モデルはコンピュータビジョン、オーディオ、強化学習、計算生物学において大きな成功を収めた。
経験的成功にもかかわらず、拡散モデルの理論は非常に限定的である。
本稿では,前向きな理論や拡散モデルの手法を刺激する理論的露光について述べる。
論文 参考訳(メタデータ) (2024-04-11T14:07:25Z) - Diffusion Model with Cross Attention as an Inductive Bias for Disentanglement [58.9768112704998]
遠方表現学習は、観測データ内の本質的要因を抽出する試みである。
我々は新しい視点と枠組みを導入し、クロスアテンションを持つ拡散モデルが強力な帰納バイアスとなることを示す。
これは、複雑な設計を必要とせず、クロスアテンションを持つ拡散モデルの強力な解離能力を明らかにする最初の研究である。
論文 参考訳(メタデータ) (2024-02-15T05:07:54Z) - Bridging Generative and Discriminative Models for Unified Visual
Perception with Diffusion Priors [56.82596340418697]
本稿では,豊富な生成前駆体を含む事前学習型安定拡散(SD)モデルと,階層的表現を統合可能な統一型ヘッド(Uヘッド)と,識別前駆体を提供する適応型専門家からなる,シンプルで効果的なフレームワークを提案する。
包括的調査では、異なる時間ステップで潜伏変数に隠された知覚の粒度や様々なU-netステージなど、バーマスの潜在的な特性が明らかになった。
有望な結果は,有望な学習者としての拡散モデルの可能性を示し,情報的かつ堅牢な視覚表現の確立にその意義を定めている。
論文 参考訳(メタデータ) (2024-01-29T10:36:57Z) - Guided Diffusion from Self-Supervised Diffusion Features [49.78673164423208]
ガイダンスは拡散モデルにおいて重要な概念として機能するが、その効果は追加のデータアノテーションや事前学習の必要性によって制限されることが多い。
本稿では,拡散モデルからガイダンスを抽出するフレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-14T11:19:11Z) - A Comprehensive Survey on Generative Diffusion Models for Structured
Data [0.0]
生成拡散モデルは 深層生成モデルにおいて 急激なパラダイムシフトを達成しました
構造化データは、ディープラーニング研究コミュニティから比較的限られた注目を集めている。
このレビューは、構造化データの生成拡散モデルの発展を促進する研究コミュニティの触媒となる。
論文 参考訳(メタデータ) (2023-06-07T04:26:41Z) - Diff-Instruct: A Universal Approach for Transferring Knowledge From
Pre-trained Diffusion Models [77.83923746319498]
本稿では,任意の生成モデルの学習を指導するDiff-Instructというフレームワークを提案する。
Diff-Instructは、最先端の単一ステップ拡散モデルであることを示す。
GANモデルの精製実験により、Diff-InstructはGANモデルの事前訓練されたジェネレータを一貫して改善できることが示されている。
論文 参考訳(メタデータ) (2023-05-29T04:22:57Z) - Hierarchically branched diffusion models leverage dataset structure for
class-conditional generation [0.6800113478497425]
分岐拡散モデルは従来のモデルと同じ拡散過程に依存するが、階層の各分岐について別々に逆拡散を学ぶ。
いくつかのベンチマークと大規模実世界の科学データセットで分岐拡散モデルを広範囲に評価した。
論文 参考訳(メタデータ) (2022-12-21T05:27:23Z) - A Survey on Generative Diffusion Model [75.93774014861978]
拡散モデルは、深層生成モデルの新たなクラスである。
時間を要する反復生成過程や高次元ユークリッド空間への閉じ込めなど、いくつかの制限がある。
本調査では,拡散モデルの向上を目的とした高度な手法を多数提示する。
論文 参考訳(メタデータ) (2022-09-06T16:56:21Z) - Let us Build Bridges: Understanding and Extending Diffusion Generative
Models [19.517597928769042]
拡散に基づく生成モデルは、最近、有望な結果を得たが、多くのオープンな疑問を提起している。
この研究は、理論的な理解を深めるために、全体的なフレームワークを再検討しようと試みている。
1)拡散生成モデルを学習するための最初の理論的誤り解析,2)異なる離散および制約された領域からのデータを学ぶための単純で統一的なアプローチを提案する。
論文 参考訳(メタデータ) (2022-08-31T08:58:10Z) - Diffusion Causal Models for Counterfactual Estimation [18.438307666925425]
本稿では,観測画像データから因果構造を推定する作業について考察する。
Diff-SCMは,近年の発電エネルギーモデルの発展を基盤とした構造因果モデルである。
Diff-SCMはMNISTデータに基づくベースラインよりも現実的で最小限のデファクトアルを生成しており、ImageNetデータにも適用可能である。
論文 参考訳(メタデータ) (2022-02-21T12:23:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。