論文の概要: DifCluE: Generating Counterfactual Explanations with Diffusion Autoencoders and modal clustering
- arxiv url: http://arxiv.org/abs/2502.11509v1
- Date: Mon, 17 Feb 2025 07:17:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:14:36.738034
- Title: DifCluE: Generating Counterfactual Explanations with Diffusion Autoencoders and modal clustering
- Title(参考訳): DifCluE:拡散オートエンコーダとモーダルクラスタリングによる非現実的説明の生成
- Authors: Suparshva Jain, Amit Sangroya, Lovekesh Vig,
- Abstract要約: 我々は拡散オートエンコーダのパワーを利用して、複数の異なる対実的説明を生成する。
潜在空間をクラスタリングすることで、クラス内の異なるモードに対応する方向を明らかにする。
我々はこれらのモードを一貫して識別し、より信頼性の高い対実的説明を生成する新しい方法論であるDifCluEを紹介する。
- 参考スコア(独自算出の注目度): 11.161081261781659
- License:
- Abstract: Generating multiple counterfactual explanations for different modes within a class presents a significant challenge, as these modes are distinct yet converge under the same classification. Diffusion probabilistic models (DPMs) have demonstrated a strong ability to capture the underlying modes of data distributions. In this paper, we harness the power of a Diffusion Autoencoder to generate multiple distinct counterfactual explanations. By clustering in the latent space, we uncover the directions corresponding to the different modes within a class, enabling the generation of diverse and meaningful counterfactuals. We introduce a novel methodology, DifCluE, which consistently identifies these modes and produces more reliable counterfactual explanations. Our experimental results demonstrate that DifCluE outperforms the current state-of-the-art in generating multiple counterfactual explanations, offering a significant advance- ment in model interpretability.
- Abstract(参考訳): クラス内の異なるモードに対する複数の反実的説明を生成することは、これらのモードは異なるが同じ分類の下で収束するので、大きな課題となる。
拡散確率モデル(DPM)は、基礎となるデータ分布のモードを捉える強力な能力を示している。
本稿では,拡散オートエンコーダのパワーを利用して,複数の対実的説明を生成する。
潜在空間内でのクラスタリングにより、クラス内の異なるモードに対応する方向が明らかになり、多様かつ有意義な反事実の生成が可能となる。
我々はこれらのモードを一貫して識別し、より信頼性の高い対実的説明を生成する新しい方法論であるDifCluEを紹介する。
実験結果から,DifCluEは複数の反現実的説明を生成する上で,現状よりも優れており,モデル解釈可能性の大幅な向上が期待できることがわかった。
関連論文リスト
- Diffexplainer: Towards Cross-modal Global Explanations with Diffusion Models [51.21351775178525]
DiffExplainerは、言語ビジョンモデルを活用することで、マルチモーダルなグローバルな説明可能性を実現する新しいフレームワークである。
最適化されたテキストプロンプトに条件付けされた拡散モデルを使用し、クラス出力を最大化する画像を合成する。
生成した視覚的記述の分析により、バイアスと突発的特徴の自動識別が可能になる。
論文 参考訳(メタデータ) (2024-04-03T10:11:22Z) - Theoretical Insights for Diffusion Guidance: A Case Study for Gaussian
Mixture Models [59.331993845831946]
拡散モデルは、所望の特性に向けてサンプル生成を操るために、スコア関数にタスク固有の情報を注入することの恩恵を受ける。
本稿では,ガウス混合モデルの文脈における拡散モデルに対する誘導の影響を理解するための最初の理論的研究を提供する。
論文 参考訳(メタデータ) (2024-03-03T23:15:48Z) - Navigating the Structured What-If Spaces: Counterfactual Generation via
Structured Diffusion [20.20945739504847]
本稿では,構造データ中の反現実的説明を生成するために拡散を利用した最初のプラグアンドプレイフレームワークであるStructured Counterfactual diffuser(SCD)を紹介する。
実験の結果, 既存の最先端技術と比較して高い妥当性を示すだけでなく, 近接性や多様性も著しく向上していることがわかった。
論文 参考訳(メタデータ) (2023-12-21T07:05:21Z) - Leveraging Diffusion Disentangled Representations to Mitigate Shortcuts
in Underspecified Visual Tasks [92.32670915472099]
拡散確率モデル(DPM)を用いた合成カウンターファクトの生成を利用したアンサンブルの多様化フレームワークを提案する。
拡散誘導型分散化は,データ収集を必要とする従来の手法に匹敵するアンサンブル多様性を達成し,ショートカットからの注意を回避できることを示す。
論文 参考訳(メタデータ) (2023-10-03T17:37:52Z) - Diff-Instruct: A Universal Approach for Transferring Knowledge From
Pre-trained Diffusion Models [77.83923746319498]
本稿では,任意の生成モデルの学習を指導するDiff-Instructというフレームワークを提案する。
Diff-Instructは、最先端の単一ステップ拡散モデルであることを示す。
GANモデルの精製実験により、Diff-InstructはGANモデルの事前訓練されたジェネレータを一貫して改善できることが示されている。
論文 参考訳(メタデータ) (2023-05-29T04:22:57Z) - Are Data-driven Explanations Robust against Out-of-distribution Data? [18.760475318852375]
エンドツーエンドのモデルに依存しない学習フレームワークであるDis Distributionally Robust Explanations (DRE)を提案する。
鍵となる考え方は、分配情報を完全に活用して、人間のアノテーションを使わずに説明の学習のための監視信号を提供することである。
提案手法は,分布変化に対する説明と予測の堅牢性の観点から,モデルの性能を著しく向上することを示す。
論文 参考訳(メタデータ) (2023-03-29T02:02:08Z) - Reduce, Reuse, Recycle: Compositional Generation with Energy-Based Diffusion Models and MCMC [102.64648158034568]
拡散モデルは、多くの領域において、生成モデリングの一般的なアプローチとなっている。
本稿では,新しい構成演算子の利用を可能にする拡散モデルのエネルギーベースパラメータ化を提案する。
これらのサンプルは、幅広い問題にまたがって構成生成の顕著な改善につながっている。
論文 参考訳(メタデータ) (2023-02-22T18:48:46Z) - Contrastively Disentangled Sequential Variational Autoencoder [20.75922928324671]
本稿では,C-DSVAE(Contrastively Disentangled Sequential Variational Autoencoder)という新しいシーケンス表現学習手法を提案する。
我々は,静的因子と動的因子の相互情報をペナルティ化しながら,入力と潜伏因子の相互情報を最大化する新しいエビデンスローバウンドを用いる。
実験の結果、C-DSVAEは従来の最先端の手法よりも優れていたことが判明した。
論文 参考訳(メタデータ) (2021-10-22T23:00:32Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
コンピュータビジョンの応用において、生成的対実法はモデルの入力を摂動させて予測を変更する方法を示す。
本稿では,多様性強化損失を用いて制約される不連続潜在空間における摂動を学習する反事実法を提案する。
このモデルは, 従来の最先端手法と比較して, 高品質な説明を生産する成功率を向上させる。
論文 参考訳(メタデータ) (2021-03-18T12:57:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。