論文の概要: DreamTuner: Single Image is Enough for Subject-Driven Generation
- arxiv url: http://arxiv.org/abs/2312.13691v1
- Date: Thu, 21 Dec 2023 09:37:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-22 15:29:14.070942
- Title: DreamTuner: Single Image is Enough for Subject-Driven Generation
- Title(参考訳): DreamTuner:シングルイメージは主観的な生成に十分
- Authors: Miao Hua, Jiawei Liu, Fei Ding, Wei Liu, Jie Wu and Qian He
- Abstract要約: 拡散に基づくモデルは、テキスト・画像生成の優れた機能を示している。
しかし、微調整に基づく既存の手法は、対象学習と事前学習モデルの生成能力の維持のトレードオフをバランスづけることができない。
本研究では,より効果的に被写体駆動画像生成を実現するために,粗い情報から細かな情報に参照情報を注入する新しい手法であるDreamTurnerを提案する。
- 参考スコア(独自算出の注目度): 16.982780785747202
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion-based models have demonstrated impressive capabilities for
text-to-image generation and are expected for personalized applications of
subject-driven generation, which require the generation of customized concepts
with one or a few reference images. However, existing methods based on
fine-tuning fail to balance the trade-off between subject learning and the
maintenance of the generation capabilities of pretrained models. Moreover,
other methods that utilize additional image encoders tend to lose important
details of the subject due to encoding compression. To address these
challenges, we propose DreamTurner, a novel method that injects reference
information from coarse to fine to achieve subject-driven image generation more
effectively. DreamTurner introduces a subject-encoder for coarse subject
identity preservation, where the compressed general subject features are
introduced through an attention layer before visual-text cross-attention. We
then modify the self-attention layers within pretrained text-to-image models to
self-subject-attention layers to refine the details of the target subject. The
generated image queries detailed features from both the reference image and
itself in self-subject-attention. It is worth emphasizing that
self-subject-attention is an effective, elegant, and training-free method for
maintaining the detailed features of customized subjects and can serve as a
plug-and-play solution during inference. Finally, with additional
subject-driven fine-tuning, DreamTurner achieves remarkable performance in
subject-driven image generation, which can be controlled by a text or other
conditions such as pose. For further details, please visit the project page at
https://dreamtuner-diffusion.github.io/.
- Abstract(参考訳): 拡散ベースのモデルは、テキストから画像への生成に印象的な能力を示しており、1つか数つの参照画像でカスタマイズされた概念を生成する必要のある、主題駆動生成のパーソナライズアプリケーションとして期待されている。
しかし、微調整に基づく既存の手法は、対象学習と事前学習モデルの生成能力の維持のトレードオフをバランスづけることができない。
さらに、付加的な画像エンコーダを利用する他の方法は、圧縮の符号化によって主題の重要な詳細を失う傾向がある。
そこで本稿では,これらの課題に対処するために,より効果的に主題駆動画像生成を実現するために,粗面から細部への参照情報を注入する新しい手法dreamturnerを提案する。
DreamTurnerは、粗い被写体識別のための被写体エンコーダを導入し、圧縮された一般被写体特徴を、視覚テキストのクロスアテンションの前にアテンション層を介して導入する。
次に,事前学習したテキストから画像への自己接続層を自己挿入層に変更し,対象オブジェクトの詳細を洗練する。
生成された画像クエリーは、参照画像とそれ自身の両方の特徴を、自己オブジェクトアテンションで詳述する。
自己目的意識は、カスタマイズされた被験者の詳細な特徴を維持するための効果的でエレガントで訓練のない方法であり、推論中にプラグアンドプレイのソリューションとして機能することを強調する価値がある。
最後に、追加のサブジェクト駆動の微調整により、dreamturnerは、テキストまたはポーズのような他の条件で制御できる、サブジェクト駆動画像生成において顕著なパフォーマンスを達成する。
詳細については、https://dreamtuner-diffusion.github.io/のプロジェクトページを参照してください。
関連論文リスト
- Conditional Text-to-Image Generation with Reference Guidance [81.99538302576302]
本稿では,拡散モデルを生成するために,特定の対象の視覚的ガイダンスを提供する画像の追加条件を用いて検討する。
我々は、異なる参照を取る能力を持つ安定拡散モデルを効率的に支持する、小規模のエキスパートプラグインを複数開発する。
専門的なプラグインは、すべてのタスクにおいて既存のメソッドよりも優れた結果を示し、それぞれ28.55Mのトレーニング可能なパラメータしか含まない。
論文 参考訳(メタデータ) (2024-11-22T21:38:51Z) - EZIGen: Enhancing zero-shot personalized image generation with precise subject encoding and decoupled guidance [20.430259028981094]
EZIGenは、与えられたテキストプロンプトと被写体画像の両方に一致した画像を作成することを目的としている。
安定拡散モデルのトレーニング済みUNetをベースとした、慎重に製作された主画像エンコーダである。
統一されたモデルと100倍のトレーニングデータを備えた、複数のパーソナライズされた生成ベンチマークで最先端の結果を得る。
論文 参考訳(メタデータ) (2024-09-12T14:44:45Z) - Training-Free Consistent Text-to-Image Generation [80.4814768762066]
テキスト・ツー・イメージ・モデルは様々なプロンプトで同じ主題を表現できる。
既存のアプローチは、特定のユーザが提供する主題を記述する新しい単語を教えるためにモデルを微調整する。
本研究では、事前学習モデルの内部アクティベーションを共有することによって、一貫した主題生成を可能にする、トレーニング不要なアプローチであるConsiStoryを提案する。
論文 参考訳(メタデータ) (2024-02-05T18:42:34Z) - Decoupled Textual Embeddings for Customized Image Generation [62.98933630971543]
カスタマイズされたテキスト・ツー・イメージ生成は、ユーザが指定した概念を少数の画像で学習することを目的としている。
既存の方法は、通常、過剰な問題に悩まされ、学習された概念と対象と無関係な情報を絡み合わせる。
フレキシブルなテキスト・ツー・イメージ生成のための不整合概念の埋め込みを学習する新しいアプローチであるDETEXを提案する。
論文 参考訳(メタデータ) (2023-12-19T03:32:10Z) - Subject-Diffusion:Open Domain Personalized Text-to-Image Generation without Test-time Fine-tuning [6.288699905490906]
本稿では,新しいオープンドメインパーソナライズされた画像生成モデルであるSubject-Diffusionを提案する。
提案手法は,他のSOTAフレームワークよりも,単一,複数,カスタマイズされた画像生成に優れる。
論文 参考訳(メタデータ) (2023-07-21T08:09:47Z) - Paste, Inpaint and Harmonize via Denoising: Subject-Driven Image Editing
with Pre-Trained Diffusion Model [22.975965453227477]
textitPaste, Inpaint, Harmonize と呼ばれる新しいフレームワークをDenoising (PhD) を通じて導入する。
本実験では,主観的画像編集作業にPhDを適用し,参照対象のテキスト駆動シーン生成を探索する。
論文 参考訳(メタデータ) (2023-06-13T07:43:10Z) - BLIP-Diffusion: Pre-trained Subject Representation for Controllable
Text-to-Image Generation and Editing [73.74570290836152]
BLIP-Diffusionはマルチモーダル制御をサポートする新しい主観駆動画像生成モデルである。
他の主観駆動生成モデルとは異なり、BLIP-Diffusionは主観表現を提供するために事前訓練された新しいマルチモーダルエンコーダを導入する。
論文 参考訳(メタデータ) (2023-05-24T04:51:04Z) - DisenBooth: Identity-Preserving Disentangled Tuning for Subject-Driven
Text-to-Image Generation [50.39533637201273]
主観駆動型テキスト・ツー・イメージ生成のためのID保存型アンタングル型チューニングフレームワークであるDisenBoothを提案する。
DisenBoothは、ID保存の埋め込みとアイデンティティ関連の埋め込みを組み合わせることで、より世代的柔軟性と制御性を示す。
論文 参考訳(メタデータ) (2023-05-05T09:08:25Z) - SINE: SINgle Image Editing with Text-to-Image Diffusion Models [10.67527134198167]
本研究の目的は、単一画像編集の問題に対処することである。
分類器フリーガイダンスに基づく新しいモデルベースガイダンスを提案する。
スタイルの変更、コンテンツの追加、オブジェクト操作など、有望な編集機能を示す。
論文 参考訳(メタデータ) (2022-12-08T18:57:13Z) - DreamArtist: Towards Controllable One-Shot Text-to-Image Generation via
Positive-Negative Prompt-Tuning [85.10894272034135]
大規模テキスト・画像生成モデルは,高解像度の高画質な高画質特徴画像の合成において,顕著な進歩を遂げている。
最近の試みでは、参照画像集合から事前学習された拡散モデルの概念を教えるための微調整戦略や急速調整戦略が採用されている。
本稿では,DreamArtistという,肯定的かつ効果的な学習手法を提案する。
論文 参考訳(メタデータ) (2022-11-21T10:37:56Z) - DreamBooth: Fine Tuning Text-to-Image Diffusion Models for
Subject-Driven Generation [26.748667878221568]
テキスト・ツー・イメージ・モデルの「個人化」のための新しいアプローチを提案する。
トレーニング済みのテキスト・ツー・イメージモデルを微調整して、ユニークな識別子を特定の主題にバインドする。
次に、ユニークな識別子を使用して、異なるシーンでコンテキスト化された被写体の完全なフォトリアリスティック・ノーベル画像を合成することができる。
論文 参考訳(メタデータ) (2022-08-25T17:45:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。