論文の概要: An Approach to Abstract Multi-stage Cyberattack Data Generation for ML-Based IDS in Smart Grids
- arxiv url: http://arxiv.org/abs/2312.13737v1
- Date: Thu, 21 Dec 2023 11:07:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 11:38:03.622341
- Title: An Approach to Abstract Multi-stage Cyberattack Data Generation for ML-Based IDS in Smart Grids
- Title(参考訳): スマートグリッドにおけるMLベースIDSのための多段階サイバー攻撃データ生成の一手法
- Authors: Ömer Sen, Philipp Malskorn, Simon Glomb, Immanuel Hacker, Martin Henze, Andreas Ulbig,
- Abstract要約: スマートグリッドにおける機械学習モデルを学習するためのグラフベースアプローチを用いて合成データを生成する手法を提案する。
我々は、グラフ定式化によって定義された多段階サイバー攻撃の抽象形式を使用し、ネットワーク内の攻撃の伝播挙動をシミュレートする。
- 参考スコア(独自算出の注目度): 2.5655761752240505
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Power grids are becoming more digitized, resulting in new opportunities for the grid operation but also new challenges, such as new threats from the cyber-domain. To address these challenges, cybersecurity solutions are being considered in the form of preventive, detective, and reactive measures. Machine learning-based intrusion detection systems are used as part of detection efforts to detect and defend against cyberattacks. However, training and testing data for these systems are often not available or suitable for use in machine learning models for detecting multi-stage cyberattacks in smart grids. In this paper, we propose a method to generate synthetic data using a graph-based approach for training machine learning models in smart grids. We use an abstract form of multi-stage cyberattacks defined via graph formulations and simulate the propagation behavior of attacks in the network. Within the selected scenarios, we observed promising results, but a larger number of scenarios need to be studied to draw a more informed conclusion about the suitability of synthesized data.
- Abstract(参考訳): 電力網はデジタル化され、グリッド運用の新たな機会が生まれつつあり、サイバードメインからの新たな脅威のような新たな課題も生じている。
これらの課題に対処するため、サイバーセキュリティソリューションは、予防的、刑事的、反応的な手段の形で検討されている。
機械学習に基づく侵入検知システムは、サイバー攻撃を検知し、防御するために使用される。
しかし、これらのシステムのトレーニングとテストデータは、しばしば、スマートグリッドにおける多段階のサイバー攻撃を検出する機械学習モデルで使用するのに適していない。
本稿では,スマートグリッドにおける機械学習モデルを学習するためのグラフベースアプローチを用いて,合成データを生成する手法を提案する。
我々は、グラフ定式化によって定義された多段階サイバー攻撃の抽象形式を使用し、ネットワーク内の攻撃の伝播挙動をシミュレートする。
選択したシナリオの中では,有望な結果が得られたが,さらに多くのシナリオが研究され,合成データの適合性に関するより深い結論が導かれる必要がある。
関連論文リスト
- NetFlowGen: Leveraging Generative Pre-training for Network Traffic Dynamics [72.95483148058378]
我々は,NetFlowレコードからのトラフィックデータのみを用いて,トラフィックダイナミクスをキャプチャする汎用機械学習モデルを事前学習することを提案する。
ネットワーク特徴表現の統一,未ラベルの大規模トラフィックデータ量からの学習,DDoS攻撃検出における下流タスクのテストといった課題に対処する。
論文 参考訳(メタデータ) (2024-12-30T00:47:49Z) - Learning in Multiple Spaces: Few-Shot Network Attack Detection with Metric-Fused Prototypical Networks [47.18575262588692]
本稿では,数発の攻撃検出に適した新しいマルチスペースプロトタイプ学習フレームワークを提案する。
Polyakの平均的なプロトタイプ生成を活用することで、このフレームワークは学習プロセスを安定化し、稀でゼロデイの攻撃に効果的に適応する。
ベンチマークデータセットによる実験結果から、MSPLは、目立たない、新しい攻撃タイプを検出する従来のアプローチよりも優れていることが示された。
論文 参考訳(メタデータ) (2024-12-28T00:09:46Z) - AI-based Attacker Models for Enhancing Multi-Stage Cyberattack Simulations in Smart Grids Using Co-Simulation Environments [1.4563527353943984]
スマートグリッドへの移行により、高度なサイバー脅威に対する電力システムの脆弱性が増大した。
本稿では,モジュール型サイバーアタックの実行に自律エージェントを用いたシミュレーションフレームワークを提案する。
当社のアプローチは、データ生成のための柔軟で汎用的なソースを提供し、より高速なプロトタイピングと開発リソースと時間の削減を支援します。
論文 参考訳(メタデータ) (2024-12-05T08:56:38Z) - Redefining DDoS Attack Detection Using A Dual-Space Prototypical Network-Based Approach [38.38311259444761]
我々は、DDoS攻撃を検出するための新しいディープラーニングベースの技術を導入する。
本稿では,一意な双対空間損失関数を利用する新しい双対空間原型ネットワークを提案する。
このアプローチは、潜在空間における表現学習の強みを生かしている。
論文 参考訳(メタデータ) (2024-06-04T03:22:52Z) - Grid Monitoring with Synchro-Waveform and AI Foundation Model Technologies [41.994460245857404]
本稿では,インバータ資源が支配する将来のグリッドを対象とした次世代グリッド監視制御システムの開発を提唱する。
我々は,高分解能シンクロ波形計測技術を用いた物理ベースのAI基盤モデルを構築し,グリッドのレジリエンスを高め,機能停止による経済的損失を低減する。
論文 参考訳(メタデータ) (2024-03-11T17:28:46Z) - Anticipated Network Surveillance -- An extrapolated study to predict
cyber-attacks using Machine Learning and Data Analytics [0.0]
本稿では、複数のデータパラメータに基づいて、ネットワークにおける今後の攻撃を予測する新しい手法について論じる。
提案するモデルは,データセットの事前処理とトレーニング,続いてテストフェーズで構成される。
テストフェーズの結果に基づいて、攻撃につながる可能性のあるイベントクラスを抽出したベストモデルが選択される。
論文 参考訳(メタデータ) (2023-12-27T01:09:11Z) - Investigation of Multi-stage Attack and Defense Simulation for Data Synthesis [2.479074862022315]
本研究では,電力網における多段階サイバー攻撃の合成データを生成するモデルを提案する。
攻撃者のステップのシーケンスをモデル化するためにアタックツリーを使用し、ディフェンダーのアクションを組み込むゲーム理論のアプローチを使用する。
論文 参考訳(メタデータ) (2023-12-21T09:54:18Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
マルウェア、スパム、侵入などのサイバー攻撃の爆発的な増加は、社会に深刻な影響をもたらした。
従来の機械学習(ML)ベースの手法は、サイバー脅威の検出に広く用いられているが、現実のサイバーエンティティ間の相関をモデル化することはほとんどない。
グラフマイニング技術の普及に伴い、サイバーエンティティ間の相関を捉え、高いパフォーマンスを達成するために、多くの研究者がこれらの手法を調査した。
論文 参考訳(メタデータ) (2023-04-02T08:43:03Z) - Deep Q-Learning based Reinforcement Learning Approach for Network
Intrusion Detection [1.7205106391379026]
本稿では,Qラーニングに基づく強化学習と,ネットワーク侵入検出のためのディープフィードフォワードニューラルネットワークを併用したネットワーク侵入検出手法を提案する。
提案するDeep Q-Learning(DQL)モデルは,ネットワーク環境に対する継続的な自動学習機能を提供する。
実験の結果,提案したDQLは,異なる侵入クラスを検出し,他の類似した機械学習手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2021-11-27T20:18:00Z) - Explainable Adversarial Attacks in Deep Neural Networks Using Activation
Profiles [69.9674326582747]
本稿では,敵対的事例に基づくニューラルネットワークモデルを検討するためのビジュアルフレームワークを提案する。
これらの要素を観察することで、モデル内の悪用領域を素早く特定できることを示す。
論文 参考訳(メタデータ) (2021-03-18T13:04:21Z) - Deep Learning based Covert Attack Identification for Industrial Control
Systems [5.299113288020827]
我々は、スマートグリッドに対する秘密攻撃と呼ばれるサイバー攻撃を検出し、診断し、ローカライズするために使用できるデータ駆動フレームワークを開発した。
このフレームワークは、オートエンコーダ、リカレントニューラルネットワーク(RNN)とLong-Short-Term-Memory層、Deep Neural Network(DNN)を組み合わせたハイブリッド設計である。
論文 参考訳(メタデータ) (2020-09-25T17:48:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。