Addressing the correlation of Stokes-shifted photons emitted from two quantum emitters
- URL: http://arxiv.org/abs/2501.19356v1
- Date: Fri, 31 Jan 2025 18:07:02 GMT
- Title: Addressing the correlation of Stokes-shifted photons emitted from two quantum emitters
- Authors: Adrián Juan-Delgado, Jean-Baptiste Trebbia, Ruben Esteban, Quentin Deplano, Philippe Tamarat, Rémi Avriller, Brahim Lounis, Javier Aizpurua,
- Abstract summary: We propose a general model to characterize the correlation of either Zero-Phonon Line photons or Stokes-shifted photons.
This model successfully reproduces the experimental correlation of Stokes-shifted photons emitted from two interacting molecules.
We analyze the role of quantum coherence in light emission from two uncorrelated emitters.
- Score: 0.0
- License:
- Abstract: In resonance fluorescence excitation experiments, light emitted from solid-state quantum emitters is typically filtered to eliminate the laser photons, ensuring that only red-shifted Stokes photons are detected. Theoretical analyses of the fluorescence intensity correlation often model emitters as two-level systems, focusing on light emitted exclusively from the purely electronic transition (the Zero-Phonon Line), or rely on statistical approaches based on conditional probabilities that do not account for quantum coherences. Here, we propose a general model to characterize the correlation of either Zero-Phonon Line photons or Stokes-shifted photons. This model successfully reproduces the experimental correlation of Stokes-shifted photons emitted from two interacting molecules and predicts that this correlation is affected by quantum coherence. Besides, we analyze the role of quantum coherence in light emission from two uncorrelated emitters, which helps to clarify the discrepancy between theory and experiments regarding the value of the correlation of photons emitted from this system at zero delay time.
Related papers
- Two-photon interference between mutually-detuned resonance fluorescence signals scattered off a semiconductor quantum dot [8.451939626098337]
Post-selective two-photon interference experiments between mutually-detuned resonance fluorescence signals from an InAs quantum dot embedded in a micropillar cavity.
Results suggest that indistinguishability among photons scattered off a quantum dot is inherently insensitive to the driving laser's detuning.
arXiv Detail & Related papers (2025-01-28T13:32:26Z) - Non-classical excitation of a solid-state quantum emitter [0.0]
We show that a single photon is sufficient to change the state of a solid-state quantum emitter.
These results suggest future possibilities ranging from enabling quantum information transfer in a quantum network to building deterministic entangling gates for photonic quantum computing.
arXiv Detail & Related papers (2024-07-30T16:16:58Z) - How single-photon nonlinearity is quenched with multiple quantum
emitters: Quantum Zeno effect in collective interactions with $\Lambda$-level
atoms [49.1574468325115]
We show that the single-photon nonlinearity vanishes with the number of emitters.
The mechanism behind this behavior is the quantum Zeno effect, manifested in the slowdown of the photon-controlled dynamics.
arXiv Detail & Related papers (2024-01-13T06:55:18Z) - Tailoring photon statistics with an atom-based two-photon interferometer [0.0]
We actively control the quantum phase between the transmitted and incoherently scattered two-photon component.
We observe interference fringes in the normalized photon coincidence rate, varying from antibunching to bunching.
Our results lend themselves to the development of novel quantum light sources.
arXiv Detail & Related papers (2022-12-19T16:24:54Z) - Probing many-body correlations using quantum-cascade correlation
spectroscopy [0.0]
The radiative quantum cascade, i.e. the consecutive emission of photons from a ladder of energy levels, is of fundamental importance in quantum optics.
Here, we use exciton polaritons to explore the cascaded emission of photons in the regime where individual transitions of the ladder are not resolved.
Remarkably, the measured photon-photon correlations exhibit a strong dependence on the polariton energy, and therefore on the underlying polaritonic interaction strength.
arXiv Detail & Related papers (2022-12-18T09:51:12Z) - Entanglement of annihilation photons [141.5628276096321]
We present the results of a new experimental study of the quantum entanglement of photon pairs produced in positron-electron annihilation at rest.
Despite numerous measurements, there is still no experimental proof of the entanglement of photons.
arXiv Detail & Related papers (2022-10-14T08:21:55Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Observations of near-perfect nonclassical correlation using coherent
light [12.507208769851653]
We show the physics of anticorrelation on a beam splitter using sub-Poisson distributed coherent photons.
A particular phase relation between paired photons is unveiled for anticorrelation, satisfying the complementarity theory of quantum mechanics.
arXiv Detail & Related papers (2021-05-05T04:27:51Z) - Quantum Borrmann effect for dissipation-immune photon-photon
correlations [137.6408511310322]
We study theoretically the second-order correlation function $g(2)(t)$ for photons transmitted through a periodic Bragg-spaced array of superconducting qubits, coupled to a waveguide.
We demonstrate that photon bunching and anti-bunching persist much longer than both radiative and non-radiative lifetimes of a single qubit.
arXiv Detail & Related papers (2020-09-29T14:37:04Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.