論文の概要: Few Shot Part Segmentation Reveals Compositional Logic for Industrial Anomaly Detection
- arxiv url: http://arxiv.org/abs/2312.13783v2
- Date: Mon, 15 Apr 2024 07:18:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-16 22:48:02.642594
- Title: Few Shot Part Segmentation Reveals Compositional Logic for Industrial Anomaly Detection
- Title(参考訳): 産業異常検出のための構成論理を解明するショット部分分割法
- Authors: Soopil Kim, Sion An, Philip Chikontwe, Myeongkyun Kang, Ehsan Adeli, Kilian M. Pohl, Sang Hyun Park,
- Abstract要約: 本稿では,論理異常(LA)検出のための新しいコンポーネントセグメンテーションモデルを提案する。
ラベル付き画像間の一貫したセグメンテーションを確保するために,エントロピーロスと合わせてヒストグラムマッチングロスを用いる。
LAを効果的に検出するために,異なるメモリバンクからの異常スコアを推論で標準化する適応スケーリング手法を提案する。
- 参考スコア(独自算出の注目度): 11.996050578189056
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Logical anomalies (LA) refer to data violating underlying logical constraints e.g., the quantity, arrangement, or composition of components within an image. Detecting accurately such anomalies requires models to reason about various component types through segmentation. However, curation of pixel-level annotations for semantic segmentation is both time-consuming and expensive. Although there are some prior few-shot or unsupervised co-part segmentation algorithms, they often fail on images with industrial object. These images have components with similar textures and shapes, and a precise differentiation proves challenging. In this study, we introduce a novel component segmentation model for LA detection that leverages a few labeled samples and unlabeled images sharing logical constraints. To ensure consistent segmentation across unlabeled images, we employ a histogram matching loss in conjunction with an entropy loss. As segmentation predictions play a crucial role, we propose to enhance both local and global sample validity detection by capturing key aspects from visual semantics via three memory banks: class histograms, component composition embeddings and patch-level representations. For effective LA detection, we propose an adaptive scaling strategy to standardize anomaly scores from different memory banks in inference. Extensive experiments on the public benchmark MVTec LOCO AD reveal our method achieves 98.1% AUROC in LA detection vs. 89.6% from competing methods.
- Abstract(参考訳): 論理異常(英: Logical Anomalies, LA)とは、画像内の成分の量、配置、構成など、基礎となる論理的制約に違反するデータを指す。
このような異常を正確に検出するには、セグメンテーションを通じて様々なコンポーネントタイプを推論する必要がある。
しかし、セマンティックセグメンテーションのためのピクセルレベルのアノテーションのキュレーションには時間と費用がかかる。
以前の少数ショットや教師なしのコパートセグメンテーションアルゴリズムはいくつか存在するが、産業オブジェクトのイメージでは失敗することが多い。
これらの画像には同様のテクスチャや形状の部品があり、正確な区別は難しい。
本研究では,いくつかのラベル付きサンプルと,論理的制約を共有する未ラベル画像を利用するLA検出のための新しい成分分割モデルを提案する。
ラベル付き画像間の一貫したセグメンテーションを確保するために,エントロピーロスと合わせてヒストグラムマッチングロスを用いる。
セグメンテーション予測が重要な役割を担いながら,3つのメモリバンク(クラスヒストグラム,コンポーネント構成埋め込み,パッチレベルの表現)を通して視覚的意味論から重要な側面を捉えることにより,局所的および大域的サンプルの妥当性を検出することを提案する。
LAを効果的に検出するために,異なるメモリバンクからの異常スコアを推論で標準化する適応スケーリング手法を提案する。
公開ベンチマーク MVTec LOCO AD での大規模な実験により、我々の手法は LA 検出において 98.1% AUROC を達成し、競合する手法では 89.6% を達成した。
関連論文リスト
- Counterfactuals and Uncertainty-Based Explainable Paradigm for the Automated Detection and Segmentation of Renal Cysts in Computed Tomography Images: A Multi-Center Study [1.83277723272657]
Routine Computed Tomography (CT)スキャンは、しばしば広範囲の腎嚢胞を検知するが、そのうちのいくつかは悪性である可能性がある。
しかし、現在のセグメンテーション法では、特徴レベルとピクセルレベルで十分な解釈性を提供していない。
我々は、解釈可能なセグメンテーションフレームワークを開発し、多中心データセット上で検証した。
論文 参考訳(メタデータ) (2024-08-07T14:14:05Z) - Visual Context-Aware Person Fall Detection [52.49277799455569]
画像中の個人とオブジェクトを半自動分離するセグメンテーションパイプラインを提案する。
ベッド、椅子、車椅子などの背景オブジェクトは、転倒検知システムに挑戦し、誤ったポジティブアラームを引き起こす。
トレーニング中のオブジェクト固有のコンテキスト変換が、この課題を効果的に軽減することを示す。
論文 参考訳(メタデータ) (2024-04-11T19:06:36Z) - PDiscoNet: Semantically consistent part discovery for fine-grained
recognition [62.12602920807109]
画像レベルのクラスラベルのみを用いて,対象部品の発見を推奨する先行情報とともにPDiscoNetを提案する。
CUB,CelebA,PartImageNet で得られた結果から,提案手法は従来手法よりもかなり優れた部分発見性能が得られることがわかった。
論文 参考訳(メタデータ) (2023-09-06T17:19:29Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
半教師付きバイオメディカルイメージセグメンテーションのための自己教師付き補正学習パラダイムを提案する。
共有エンコーダと2つの独立デコーダを含むデュアルタスクネットワークを設計する。
異なるタスクのための3つの医用画像分割データセットの実験により,本手法の優れた性能が示された。
論文 参考訳(メタデータ) (2023-01-12T08:19:46Z) - Learning to Annotate Part Segmentation with Gradient Matching [58.100715754135685]
本稿では,事前学習したGANを用いて,高品質な画像を生成することで,半教師付き部分分割タスクに対処することに焦点を当てる。
特に、アノテータ学習を学習から学習までの問題として定式化する。
提案手法は,実画像,生成された画像,さらには解析的に描画された画像を含む,幅広いラベル付き画像からアノテータを学習可能であることを示す。
論文 参考訳(メタデータ) (2022-11-06T01:29:22Z) - Contrastive Image Synthesis and Self-supervised Feature Adaptation for
Cross-Modality Biomedical Image Segmentation [8.772764547425291]
CISFAは、画像ドメインの翻訳と、クロスモーダルなバイオメディカルなイメージセグメンテーションのための教師なしの機能適応に基づいている。
我々は,片側生成モデルを用いて,入力画像のサンプルパッチと対応する合成画像との重み付けパッチワイドコントラスト損失を付加する。
腹腔・全心に対するCTおよびMRI画像を含むセグメンテーションタスクについて検討した。
論文 参考訳(メタデータ) (2022-07-27T01:49:26Z) - Mixed-UNet: Refined Class Activation Mapping for Weakly-Supervised
Semantic Segmentation with Multi-scale Inference [28.409679398886304]
我々は、デコードフェーズに2つの並列分岐を持つMixed-UNetという新しいモデルを開発する。
地域病院や公開データセットから収集したデータセットに対して,いくつかの一般的なディープラーニングに基づくセグメンテーションアプローチに対して,設計したMixed-UNetを評価した。
論文 参考訳(メタデータ) (2022-05-06T08:37:02Z) - Self-supervised Image-specific Prototype Exploration for Weakly
Supervised Semantic Segmentation [72.33139350241044]
画像レベルのラベルをベースとしたWSSS(Weakly Supervised Semantic COCO)は,アノテーションコストの低さから注目されている。
本稿では,画像特異的なプロトタイプ探索 (IPE) と汎用一貫性 (GSC) の喪失からなる画像固有プロトタイプ探索 (SIPE) を提案する。
SIPEは,画像レベルラベルのみを用いて,最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-03-06T09:01:03Z) - Unsupervised Part Discovery from Contrastive Reconstruction [90.88501867321573]
自己監督型視覚表現学習の目標は、強く伝達可能な画像表現を学習することである。
対象部分の発見とセグメンテーションに対する教師なしアプローチを提案する。
本手法は, 細粒度, 視覚的に異なるカテゴリ間でセマンティックな部分を生成する。
論文 参考訳(メタデータ) (2021-11-11T17:59:42Z) - A Weakly-Supervised Semantic Segmentation Approach based on the Centroid
Loss: Application to Quality Control and Inspection [6.101839518775968]
本稿では,新しい損失関数を用いた弱教師付きセマンティックセマンティックセマンティクス手法の提案と評価を行う。
アプローチのパフォーマンスは,2つの業界関連ケーススタディのデータセットに対して評価される。
論文 参考訳(メタデータ) (2020-10-26T09:08:21Z) - Few-Shot Defect Segmentation Leveraging Abundant Normal Training Samples
Through Normal Background Regularization and Crop-and-Paste Operation [4.626338154327536]
産業検査作業では, 欠陥のない画像サンプルが豊富だが, 異常な画像が極めて少ないことが一般的である。
本論文は,正常な(欠陥のない)トレーニングイメージを十分に用いながら,異常な部分しか持たない,難解な少数ショット欠陥分割課題に対処する。
UNetライクなエンコーダ-デコーダ欠陥分割ネットワークのトレーニングに、豊富な欠陥のないイメージを組み込むことにより、2つの効果的な正則化手法を提案する。
論文 参考訳(メタデータ) (2020-07-18T14:15:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。