論文の概要: Counterfactuals and Uncertainty-Based Explainable Paradigm for the Automated Detection and Segmentation of Renal Cysts in Computed Tomography Images: A Multi-Center Study
- arxiv url: http://arxiv.org/abs/2408.03789v1
- Date: Wed, 7 Aug 2024 14:14:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-08 12:54:35.764951
- Title: Counterfactuals and Uncertainty-Based Explainable Paradigm for the Automated Detection and Segmentation of Renal Cysts in Computed Tomography Images: A Multi-Center Study
- Title(参考訳): Computed Tomography 画像における腎嚢胞の自動検出・分節のためのファクトファクトと不確実性に基づく説明可能なパラダイム:多施設共同研究
- Authors: Zohaib Salahuddin, Abdalla Ibrahim, Sheng Kuang, Yousif Widaatalla, Razvan L. Miclea, Oliver Morin, Spencer Behr, Marnix P. M. Kop, Tom Marcelissen, Patricia Zondervan, Auke Jager, Philippe Lambin, Henry C Woodruff,
- Abstract要約: Routine Computed Tomography (CT)スキャンは、しばしば広範囲の腎嚢胞を検知するが、そのうちのいくつかは悪性である可能性がある。
しかし、現在のセグメンテーション法では、特徴レベルとピクセルレベルで十分な解釈性を提供していない。
我々は、解釈可能なセグメンテーションフレームワークを開発し、多中心データセット上で検証した。
- 参考スコア(独自算出の注目度): 1.83277723272657
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Routine computed tomography (CT) scans often detect a wide range of renal cysts, some of which may be malignant. Early and precise localization of these cysts can significantly aid quantitative image analysis. Current segmentation methods, however, do not offer sufficient interpretability at the feature and pixel levels, emphasizing the necessity for an explainable framework that can detect and rectify model inaccuracies. We developed an interpretable segmentation framework and validated it on a multi-centric dataset. A Variational Autoencoder Generative Adversarial Network (VAE-GAN) was employed to learn the latent representation of 3D input patches and reconstruct input images. Modifications in the latent representation using the gradient of the segmentation model generated counterfactual explanations for varying dice similarity coefficients (DSC). Radiomics features extracted from these counterfactual images, using a ground truth cyst mask, were analyzed to determine their correlation with segmentation performance. The DSCs for the original and VAE-GAN reconstructed images for counterfactual image generation showed no significant differences. Counterfactual explanations highlighted how variations in cyst image features influence segmentation outcomes and showed model discrepancies. Radiomics features correlating positively and negatively with dice scores were identified. The uncertainty of the predicted segmentation masks was estimated using posterior sampling of the weight space. The combination of counterfactual explanations and uncertainty maps provided a deeper understanding of the image features within the segmented renal cysts that lead to high uncertainty. The proposed segmentation framework not only achieved high segmentation accuracy but also increased interpretability regarding how image features impact segmentation performance.
- Abstract(参考訳): Routine Computed Tomography (CT)スキャンは、しばしば広範囲の腎嚢胞を検知するが、そのうちのいくつかは悪性である可能性がある。
これらの嚢胞の早期かつ正確な局在化は定量的な画像解析に有効である。
しかし、現在のセグメンテーション手法では、機能やピクセルレベルで十分な解釈性を提供しておらず、モデル不正確性を検出・修正できる説明可能なフレームワークの必要性を強調している。
我々は、解釈可能なセグメンテーションフレームワークを開発し、多中心データセット上で検証した。
可変オートエンコーダ生成適応ネットワーク(VAE-GAN)を用いて,3次元入力パッチの潜時表現を学習し,入力画像の再構成を行った。
セグメンテーションモデルの勾配を用いた潜在表現の修正は、異なるダイス類似度係数(DSC)に対する反実的説明を生成する。
地中真実のシストマスクを用いて,これらの反事実画像から抽出した放射能特性を解析し,セグメンテーション性能との相関性を検討した。
原画像とVAE-GAN画像のDSCは, 画像生成に有意な差は認められなかった。
嚢胞像の変異がセグメンテーションの結果にどのように影響し, モデル差がみられた。
ラジオミクスの特徴は, サイススコアと正・負の相関が認められた。
予測されたセグメンテーションマスクの不確かさは,重量空間の後方サンプリングを用いて推定した。
反事実的説明と不確実性マップの組み合わせは、高い不確実性をもたらすセグメンテーションされた腎嚢胞内の画像の特徴をより深く理解した。
提案したセグメンテーションフレームワークは,高いセグメンテーション精度を達成しただけでなく,画像特徴がセグメンテーション性能に与える影響に関する解釈可能性も向上した。
関連論文リスト
- Advancing Medical Image Segmentation: Morphology-Driven Learning with Diffusion Transformer [4.672688418357066]
本稿では,雑音の存在下での頑健なセグメンテーションのためのトランスフォーマー拡散(DTS)モデルを提案する。
画像の形態的表現を解析する本モデルでは, 種々の医用画像モダリティにおいて, 従来のモデルよりも良好な結果が得られた。
論文 参考訳(メタデータ) (2024-08-01T07:35:54Z) - FlowSDF: Flow Matching for Medical Image Segmentation Using Distance Transforms [60.195642571004804]
署名された距離関数(SDF)を表す画像誘導型条件付きフローマッチングフレームワークであるFlowSDFを提案する。
SDFの条件分布の確率パスに直接関係するベクトル場を学習することにより、セグメント化マスクの分布から正確にサンプリングすることができる。
論文 参考訳(メタデータ) (2024-05-28T11:47:12Z) - DiffSeg: A Segmentation Model for Skin Lesions Based on Diffusion Difference [2.9082809324784082]
拡散差に基づく皮膚病変のセグメンテーションモデルDiffSegを紹介する。
マルチアウトプット能力は医師のアノテーションの振る舞いを模倣し、セグメンテーション結果の一貫性とあいまいさの可視化を容易にする。
我々は,ISIC 2018 ChallengeデータセットにおけるDiffSegの有効性を示す。
論文 参考訳(メタデータ) (2024-04-25T09:57:52Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
医用画像のセグメンテーションはコンピュータ支援診断において重要な役割を担っている。
半教師型医用画像(DEC-Seg)のための新しいDual-scale Enhanced and Cross-generative consistency learning frameworkを提案する。
論文 参考訳(メタデータ) (2023-12-26T12:56:31Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Mixed-UNet: Refined Class Activation Mapping for Weakly-Supervised
Semantic Segmentation with Multi-scale Inference [28.409679398886304]
我々は、デコードフェーズに2つの並列分岐を持つMixed-UNetという新しいモデルを開発する。
地域病院や公開データセットから収集したデータセットに対して,いくつかの一般的なディープラーニングに基づくセグメンテーションアプローチに対して,設計したMixed-UNetを評価した。
論文 参考訳(メタデータ) (2022-05-06T08:37:02Z) - Texture Characterization of Histopathologic Images Using Ecological
Diversity Measures and Discrete Wavelet Transform [82.53597363161228]
本稿では,病理組織像間でテクスチャを特徴付ける手法を提案する。
2つのHIデータセットに有望な精度で、そのような画像の固有特性を定量化することが可能である。
論文 参考訳(メタデータ) (2022-02-27T02:19:09Z) - Variational Inference for Quantifying Inter-observer Variability in
Segmentation of Anatomical Structures [12.138198227748353]
ほとんどのセグメンテーション法は、単純にイメージからその単一セグメンテーションマップへのマッピングをモデル化し、アノテータの不一致を考慮に入れない。
特定のMR画像から得られる可視分割写像の分布をモデル化する新しい変分推論フレームワークを提案する。
論文 参考訳(メタデータ) (2022-01-18T16:33:33Z) - Trustworthy Medical Segmentation with Uncertainty Estimation [0.7829352305480285]
本稿では,セグメンテーションニューラルネットワークにおける不確実性定量化のための新しいベイズディープラーニングフレームワークを提案する。
我々は磁気共鳴イメージングとCTによる医用画像分割データについて検討した。
複数のベンチマークデータセットに対する実験により,提案するフレームワークは,最先端セグメンテーションモデルと比較して,ノイズや敵攻撃に対してより堅牢であることが示された。
論文 参考訳(メタデータ) (2021-11-10T22:46:05Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。