論文の概要: Cluster-based classification with neural ODEs via control
- arxiv url: http://arxiv.org/abs/2312.13807v2
- Date: Thu, 17 Apr 2025 14:28:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-18 14:33:09.625234
- Title: Cluster-based classification with neural ODEs via control
- Title(参考訳): 制御によるニューラルODEを用いたクラスタベース分類
- Authors: Antonio Álvarez-López, Rafael Orive-Illera, Enrique Zuazua,
- Abstract要約: パラメータを時間的一貫した関数として固定した単一ニューロンアーキテクチャを考える。
以前の研究では、$O(N)$スイッチを必要とするポイントバイポイント戦略を用いて分類が可能であることが示されている。
本稿では,任意のデータセットを$d$ポイントのクラスタを逐次ステアリングすることで,任意のデータセットを分類する新しい制御手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We address binary classification using neural ordinary differential equations from the perspective of simultaneous control of $N$ data points. We consider a single-neuron architecture with parameters fixed as piecewise constant functions of time. In this setting, the model complexity can be quantified by the number of control switches. Previous work has shown that classification can be achieved using a point-by-point strategy that requires $O(N)$ switches. We propose a new control method that classifies any arbitrary dataset by sequentially steering clusters of $d$ points, thereby reducing the complexity to $O(N/d)$ switches. The optimality of this result, particularly in high dimensions, is supported by some numerical experiments. Our complexity bound is sufficient but often conservative because same-class points tend to appear in larger clusters, simplifying classification. This motivates studying the probability distribution of the number of switches required. We introduce a simple control method that imposes a collinearity constraint on the parameters, and analyze a worst-case scenario where both classes have the same size and all points are i.i.d. Our results highlight the benefits of high-dimensional spaces, showing that classification using constant controls becomes more probable as $d$ increases.
- Abstract(参考訳): 我々は、N$データポイントの同時制御の観点から、ニューラル常微分方程式を用いた二項分類に対処する。
パラメータを時間的一貫した関数として固定した単一ニューロンアーキテクチャを考える。
この設定では、モデル複雑性は制御スイッチの数によって定量化できる。
以前の研究では、$O(N)$スイッチを必要とするポイントバイポイント戦略を使って分類が可能であることが示されている。
本稿では,任意のデータセットを$d$ポイントのクラスタを逐次ステアリングすることで,任意のデータセットを分類し,複雑性を$O(N/d)$スイッチに低減する新しい制御手法を提案する。
この結果の最適性、特に高次元では、いくつかの数値実験によって支持される。
我々の複雑性境界は十分だが、しばしば保守的である。なぜなら、同級点はより大きなクラスタに現れ、分類を単純化する傾向があるからである。
これは、要求されるスイッチ数の確率分布を研究する動機である。
パラメータにコリニアリティ制約を課す単純な制御手法を導入し、両クラスが同じ大きさで全ての点が同じである最悪のシナリオを分析する。
関連論文リスト
- Dimension-independent learning rates for high-dimensional classification
problems [53.622581586464634]
各RBV2$関数は、重みが有界なニューラルネットワークによって近似可能であることを示す。
次に、分類関数を近似した有界重みを持つニューラルネットワークの存在を証明する。
論文 参考訳(メタデータ) (2024-09-26T16:02:13Z) - Minimum number of neurons in fully connected layers of a given neural network (the first approximation) [0.0]
本稿では,任意のネットワークが与えられた問題を解く際の,完全連結層内のニューロンの最小数を探索するアルゴリズムを提案する。
提案アルゴリズムは,検出されたニューロン数のニューラルネットワークが要求される品質に適応可能であることを保証していないため,層内のニューロンの最小数を推定するための最初の近似である。
論文 参考訳(メタデータ) (2024-05-23T03:46:07Z) - First Steps Towards a Runtime Analysis of Neuroevolution [2.07180164747172]
進化的アルゴリズムは、単純な人工ニューラルネットワークの重みとアクティベーション機能を最適化する。
次に、ネットワークによって学習される単純な例関数を定義し、単一のニューロンを持つネットワークと、複数のニューロンと2つのレイヤを持つより高度な構造に対して厳密な実行時解析を行う。
その結果,提案アルゴリズムは1つのニューロンに対して設計された2つのサンプル問題に対して効率が良く,二層ネットワークのサンプル問題に対して少なくとも一定の確率で効率がよいことがわかった。
論文 参考訳(メタデータ) (2023-07-03T07:30:58Z) - The Separation Capacity of Random Neural Networks [78.25060223808936]
標準ガウス重みと一様分布バイアスを持つ十分に大きな2層ReLUネットワークは、この問題を高い確率で解くことができることを示す。
我々は、相互複雑性という新しい概念の観点から、データの関連構造を定量化する。
論文 参考訳(メタデータ) (2021-07-31T10:25:26Z) - Fundamental tradeoffs between memorization and robustness in random
features and neural tangent regimes [15.76663241036412]
モデルがトレーニングのごく一部を記憶している場合、そのソボレフ・セミノルムは低い有界であることを示す。
実験によって初めて、(iv)ミンノルム補間器の堅牢性における多重発色現象が明らかになった。
論文 参考訳(メタデータ) (2021-06-04T17:52:50Z) - The Efficacy of $L_1$ Regularization in Two-Layer Neural Networks [36.753907384994704]
ニューラルネットワークにおける重要な問題は、最も適切な数の隠れたニューロンを選択し、厳密な統計的リスク境界を得ることである。
我々は、$L_1$正規化が一般化誤差を制御し、入力次元を分散させることができることを示す。
過剰な数のニューロンは、必ずしも適切な正規化の下で一般化誤差を増大させるとは限らない。
論文 参考訳(メタデータ) (2020-10-02T15:23:22Z) - Exploiting Heterogeneity in Operational Neural Networks by Synaptic
Plasticity [87.32169414230822]
最近提案されたネットワークモデルであるオペレーショナルニューラルネットワーク(ONN)は、従来の畳み込みニューラルネットワーク(CNN)を一般化することができる。
本研究では, 生体ニューロンにおける本質的な学習理論を示すSynaptic Plasticityパラダイムに基づいて, ネットワークの隠蔽ニューロンに対する最強演算子集合の探索に焦点をあてる。
高難易度問題に対する実験結果から、神経細胞や層が少なくても、GISベースのONNよりも優れた学習性能が得られることが示された。
論文 参考訳(メタデータ) (2020-08-21T19:03:23Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z) - Measuring Model Complexity of Neural Networks with Curve Activation
Functions [100.98319505253797]
本稿では,線形近似ニューラルネットワーク(LANN)を提案する。
ニューラルネットワークのトレーニングプロセスを実験的に検討し、オーバーフィッティングを検出する。
我々は、$L1$と$L2$正規化がモデルの複雑さの増加を抑制することを発見した。
論文 参考訳(メタデータ) (2020-06-16T07:38:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。