High-fidelity, multi-qubit generalized measurements with dynamic circuits
- URL: http://arxiv.org/abs/2312.14087v2
- Date: Mon, 26 Aug 2024 05:05:28 GMT
- Title: High-fidelity, multi-qubit generalized measurements with dynamic circuits
- Authors: Petr Ivashkov, Gideon Uchehara, Liang Jiang, Derek S. Wang, Alireza Seif,
- Abstract summary: Generalized measurements, also called positive operator-valued measures (POVMs), can offer advantages over projective measurements in quantum information tasks.
Here, we realize a generalized measurement of one and two superconducting qubits with high fidelity and in a single experimental setting.
We showcase a highly effective use of approximate compiling to enhance POVM fidelity in noisy conditions.
- Score: 1.6437645274005803
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generalized measurements, also called positive operator-valued measures (POVMs), can offer advantages over projective measurements in various quantum information tasks. Here, we realize a generalized measurement of one and two superconducting qubits with high fidelity and in a single experimental setting. To do so, we propose a hybrid method, the "Naimark-terminated binary tree," based on a hybridization of Naimark's dilation and binary tree techniques that leverages emerging hardware capabilities for mid-circuit measurements and feed-forward control. Furthermore, we showcase a highly effective use of approximate compiling to enhance POVM fidelity in noisy conditions. We argue that our hybrid method scales better toward larger system sizes than its constituent methods and demonstrate its advantage by performing detector tomography of symmetric, informationally complete POVM (SIC-POVM). Detector fidelity is further improved through a composite error mitigation strategy that incorporates twirling and a newly devised conditional readout error mitigation. Looking forward, we expect improvements in approximate compilation and hardware noise for dynamic circuits to enable generalized measurements of larger multi-qubit POVMs on superconducting qubits.
Related papers
- MG-Net: Learn to Customize QAOA with Circuit Depth Awareness [51.78425545377329]
Quantum Approximate Optimization Algorithm (QAOA) and its variants exhibit immense potential in tackling optimization challenges.
The requisite circuit depth for satisfactory performance is problem-specific and often exceeds the maximum capability of current quantum devices.
We introduce the Mixer Generator Network (MG-Net), a unified deep learning framework adept at dynamically formulating optimal mixer Hamiltonians.
arXiv Detail & Related papers (2024-09-27T12:28:18Z) - Scalable quantum dynamics compilation via quantum machine learning [7.31922231703204]
variational quantum compilation (VQC) methods employ variational optimization to reduce gate costs while maintaining high accuracy.
We show that our approach exceeds state-of-the-art compilation results in both system size and accuracy in one dimension ($1$D)
For the first time, we extend VQC to systems on two-dimensional (2D) strips with a quasi-1D treatment, demonstrating a significant resource advantage over standard Trotterization methods.
arXiv Detail & Related papers (2024-09-24T18:00:00Z) - Robust shallow shadows [0.251657752676152]
We present a robust shadow estimation protocol for wide classes of shallow measurement circuits.
We show how to estimate this directly from experimental data using tensor-network tools.
Under the practical constraints of current and near-term noisy quantum devices, our method maximally realizes the potential of shadow estimation with global rotations.
arXiv Detail & Related papers (2024-05-09T18:00:09Z) - Coarse-grained quantum state tomography with optimal POVM construction [2.985603723386298]
We introduce a novel approach to reconstruct the target density matrix from a comprehensive set of Positive Operator-Valued Measures (POVM)
We improve the robustness and stability of CG state tomography (QST) by optimizing the POVM set to achieve a generalized symmetric informationally complete (GSIC) POVM.
We discuss a more efficient construction of N-qubit CG-QST without exponential increases in two-qubit or circuit depth per measurement.
arXiv Detail & Related papers (2024-04-09T13:11:27Z) - Projective Quantum Eigensolver via Adiabatically Decoupled Subsystem Evolution: a Resource Efficient Approach to Molecular Energetics in Noisy Quantum Computers [0.0]
We develop a projective formalism that aims to compute ground-state energies of molecular systems accurately using Noisy Intermediate Scale Quantum (NISQ) hardware.
We demonstrate the method's superior performance under noise while concurrently ensuring requisite accuracy in future fault-tolerant systems.
arXiv Detail & Related papers (2024-03-13T13:27:40Z) - Meta-Learning Adversarial Bandit Algorithms [55.72892209124227]
We study online meta-learning with bandit feedback.
We learn to tune online mirror descent generalization (OMD) with self-concordant barrier regularizers.
arXiv Detail & Related papers (2023-07-05T13:52:10Z) - One-Dimensional Deep Image Prior for Curve Fitting of S-Parameters from
Electromagnetic Solvers [57.441926088870325]
Deep Image Prior (DIP) is a technique that optimized the weights of a randomly-d convolutional neural network to fit a signal from noisy or under-determined measurements.
Relative to publicly available implementations of Vector Fitting (VF), our method shows superior performance on nearly all test examples.
arXiv Detail & Related papers (2023-06-06T20:28:37Z) - Optimal quantum control via genetic algorithms for quantum state
engineering in driven-resonator mediated networks [68.8204255655161]
We employ a machine learning-enabled approach to quantum state engineering based on evolutionary algorithms.
We consider a network of qubits -- encoded in the states of artificial atoms with no direct coupling -- interacting via a common single-mode driven microwave resonator.
We observe high quantum fidelities and resilience to noise, despite the algorithm being trained in the ideal noise-free setting.
arXiv Detail & Related papers (2022-06-29T14:34:00Z) - Ancilla-free implementation of generalized measurements for qubits
embedded in a qudit space [1.4680035572775534]
We show how to implement a general class of IC-POVMs without ancilla qubits.
We exploit the higher-dimensional Hilbert space of a qudit in which qubits are often encoded.
We develop the required control pulse sequences and numerically establish their feasibility for superconducting transmon qubits.
arXiv Detail & Related papers (2022-03-14T17:59:59Z) - Entanglement-assisted entanglement purification [62.997667081978825]
We present a new class of entanglement-assisted entanglement purification protocols that can generate high-fidelity entanglement from noisy, finite-size ensembles.
Our protocols can deal with arbitrary errors, but are best suited for few errors, and work particularly well for decay noise.
arXiv Detail & Related papers (2020-11-13T19:00:05Z) - Efficient and robust certification of genuine multipartite entanglement
in noisy quantum error correction circuits [58.720142291102135]
We introduce a conditional witnessing technique to certify genuine multipartite entanglement (GME)
We prove that the detection of entanglement in a linear number of bipartitions by a number of measurements scales linearly, suffices to certify GME.
We apply our method to the noisy readout of stabilizer operators of the distance-three topological color code and its flag-based fault-tolerant version.
arXiv Detail & Related papers (2020-10-06T18:00:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.