On Early Detection of Hallucinations in Factual Question Answering
- URL: http://arxiv.org/abs/2312.14183v3
- Date: Thu, 22 Aug 2024 07:01:29 GMT
- Title: On Early Detection of Hallucinations in Factual Question Answering
- Authors: Ben Snyder, Marius Moisescu, Muhammad Bilal Zafar,
- Abstract summary: hallucinations remain a major impediment towards gaining user trust.
In this work, we explore if the artifacts associated with the model generations can provide hints that the generation will contain hallucinations.
Our results show that the distributions of these artifacts tend to differ between hallucinated and non-hallucinated generations.
- Score: 4.76359068115052
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While large language models (LLMs) have taken great strides towards helping humans with a plethora of tasks, hallucinations remain a major impediment towards gaining user trust. The fluency and coherence of model generations even when hallucinating makes detection a difficult task. In this work, we explore if the artifacts associated with the model generations can provide hints that the generation will contain hallucinations. Specifically, we probe LLMs at 1) the inputs via Integrated Gradients based token attribution, 2) the outputs via the Softmax probabilities, and 3) the internal state via self-attention and fully-connected layer activations for signs of hallucinations on open-ended question answering tasks. Our results show that the distributions of these artifacts tend to differ between hallucinated and non-hallucinated generations. Building on this insight, we train binary classifiers that use these artifacts as input features to classify model generations into hallucinations and non-hallucinations. These hallucination classifiers achieve up to $0.80$ AUROC. We also show that tokens preceding a hallucination can already predict the subsequent hallucination even before it occurs.
Related papers
- ANAH-v2: Scaling Analytical Hallucination Annotation of Large Language Models [65.12177400764506]
Large language models (LLMs) exhibit hallucinations in long-form question-answering tasks across various domains and wide applications.
Current hallucination detection and mitigation datasets are limited in domains and sizes.
This paper introduces an iterative self-training framework that simultaneously and progressively scales up the hallucination annotation dataset.
arXiv Detail & Related papers (2024-07-05T17:56:38Z) - Detecting and Mitigating Hallucination in Large Vision Language Models via Fine-Grained AI Feedback [48.065569871444275]
We propose detecting and mitigating hallucinations in Large Vision Language Models (LVLMs) via fine-grained AI feedback.
We generate a small-size hallucination annotation dataset by proprietary models.
Then, we propose a detect-then-rewrite pipeline to automatically construct preference dataset for training hallucination mitigating model.
arXiv Detail & Related papers (2024-04-22T14:46:10Z) - On Large Language Models' Hallucination with Regard to Known Facts [74.96789694959894]
Large language models are successful in answering factoid questions but are also prone to hallucination.
We investigate the phenomenon of LLMs possessing correct answer knowledge yet still hallucinating from the perspective of inference dynamics.
Our study shed light on understanding the reasons for LLMs' hallucinations on their known facts, and more importantly, on accurately predicting when they are hallucinating.
arXiv Detail & Related papers (2024-03-29T06:48:30Z) - Mechanistic Understanding and Mitigation of Language Model Non-Factual Hallucinations [42.46721214112836]
State-of-the-art language models (LMs) sometimes generate non-factual hallucinations that misalign with world knowledge.
We create diagnostic datasets with subject-relation queries and adapt interpretability methods to trace hallucinations through internal model representations.
arXiv Detail & Related papers (2024-03-27T00:23:03Z) - Hallucinations in Neural Automatic Speech Recognition: Identifying
Errors and Hallucinatory Models [11.492702369437785]
Hallucinations are semantically unrelated to the source utterance, yet still fluent and coherent.
We show that commonly used metrics, such as word error rates, cannot differentiate between hallucinatory and non-hallucinatory models.
We devise a framework for identifying hallucinations by analysing their semantic connection with the ground truth and their fluency.
arXiv Detail & Related papers (2024-01-03T06:56:56Z) - Alleviating Hallucinations of Large Language Models through Induced
Hallucinations [67.35512483340837]
Large language models (LLMs) have been observed to generate responses that include inaccurate or fabricated information.
We propose a simple textitInduce-then-Contrast Decoding (ICD) strategy to alleviate hallucinations.
arXiv Detail & Related papers (2023-12-25T12:32:49Z) - HalluciDoctor: Mitigating Hallucinatory Toxicity in Visual Instruction Data [102.56792377624927]
hallucinations inherent in machine-generated data remain under-explored.
We present a novel hallucination detection and elimination framework, HalluciDoctor, based on the cross-checking paradigm.
Our method successfully mitigates 44.6% hallucinations relatively and maintains competitive performance compared to LLaVA.
arXiv Detail & Related papers (2023-11-22T04:52:58Z) - AutoHall: Automated Hallucination Dataset Generation for Large Language Models [56.92068213969036]
This paper introduces a method for automatically constructing model-specific hallucination datasets based on existing fact-checking datasets called AutoHall.
We also propose a zero-resource and black-box hallucination detection method based on self-contradiction.
arXiv Detail & Related papers (2023-09-30T05:20:02Z) - Understanding and Detecting Hallucinations in Neural Machine Translation
via Model Introspection [28.445196622710164]
We first identify internal model symptoms of hallucinations by analyzing the relative token contributions to the generation in contrastive hallucinated vs. non-hallucinated outputs generated via source perturbations.
We then show that these symptoms are reliable indicators of natural hallucinations, by using them to design a lightweight hallucination detector.
arXiv Detail & Related papers (2023-01-18T20:43:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.