論文の概要: Auto311: A Confidence-guided Automated System for Non-emergency Call
- arxiv url: http://arxiv.org/abs/2312.14185v1
- Date: Tue, 19 Dec 2023 20:52:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-31 03:48:29.719868
- Title: Auto311: A Confidence-guided Automated System for Non-emergency Call
- Title(参考訳): Auto311:非緊急呼び出しのための信頼誘導自動システム
- Authors: Zirong Chen, Xutong Sun, Yuanhe Li, Meiyi Ma
- Abstract要約: 我々は11,796件の緊急通話記録を分析し、311件の緊急通話を処理する最初の自動化システムであるAuto311を開発した。
実世界のデータを使って、システムの有効性とデプロイ性を評価しました。
- 参考スコア(独自算出の注目度): 2.025468874117372
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Emergency and non-emergency response systems are essential services provided
by local governments and critical to protecting lives, the environment, and
property. The effective handling of (non-)emergency calls is critical for
public safety and well-being. By reducing the burden through non-emergency
callers, residents in critical need of assistance through 911 will receive a
fast and effective response. Collaborating with the Department of Emergency
Communications (DEC) in Nashville, we analyzed 11,796 non-emergency call
recordings and developed Auto311, the first automated system to handle 311
non-emergency calls, which (1) effectively and dynamically predicts ongoing
non-emergency incident types to generate tailored case reports during the call;
(2) itemizes essential information from dialogue contexts to complete the
generated reports; and (3) strategically structures system-caller dialogues
with optimized confidence. We used real-world data to evaluate the system's
effectiveness and deployability. The experimental results indicate that the
system effectively predicts incident type with an average F-1 score of 92.54%.
Moreover, the system successfully itemizes critical information from relevant
contexts to complete reports, evincing a 0.93 average consistency score
compared to the ground truth. Additionally, emulations demonstrate that the
system effectively decreases conversation turns as the utterance size gets more
extensive and categorizes the ongoing call with 94.49% mean accuracy.
- Abstract(参考訳): 緊急時及び非緊急時対応システムは、自治体が提供し、生活、環境、財産を保護するのに不可欠なサービスである。
非緊急呼び出しの効果的な処理は、公共の安全と幸福のために重要である。
非緊急呼び出し者による負担を軽減することで、911日までに支援を必要としている住民は、迅速かつ効果的な対応を受けることができる。
Collaborating with the Department of Emergency Communications (DEC) in Nashville, we analyzed 11,796 non-emergency call recordings and developed Auto311, the first automated system to handle 311 non-emergency calls, which (1) effectively and dynamically predicts ongoing non-emergency incident types to generate tailored case reports during the call; (2) itemizes essential information from dialogue contexts to complete the generated reports; and (3) strategically structures system-caller dialogues with optimized confidence.
実世界のデータを用いてシステムの有効性とデプロイ性を評価した。
実験の結果,本システムは平均f-1スコア92.54%のインシデントタイプを効果的に予測できることがわかった。
さらに,本システムでは,関連する文脈から重要情報を抽出して報告を完了し,基礎的事実と比較して平均一貫性スコア0.93を達成している。
さらにエミュレーションでは、発話サイズが大きくなるにつれて会話のターンを効果的に減らし、94.49%の平均精度で通話を分類している。
関連論文リスト
- Semantic Communication for Cooperative Perception using HARQ [51.148203799109304]
我々は重要セマンティック情報を抽出するために重要地図を活用し、協調的な知覚セマンティックコミュニケーションフレームワークを導入する。
周波数分割多重化(OFDM)とチャネル推定と等化戦略を併用して,時間変化によるマルチパスフェーディングによる課題に対処する。
我々は,ハイブリッド自動繰り返し要求(HARQ)の精神において,我々の意味コミュニケーションフレームワークと統合された新しい意味エラー検出手法を提案する。
論文 参考訳(メタデータ) (2024-08-29T08:53:26Z) - LLM-Assisted Crisis Management: Building Advanced LLM Platforms for Effective Emergency Response and Public Collaboration [0.0]
本稿では,オープンソースのLarge Language Model, LLAMA2を用いて, 緊急時の特定と分類を行う新しい手法を提案する。
目標は、自然言語処理と機械学習の力を活用して、全国の緊急時に公共の安全通信事業者や大群衆を支援することだ。
論文 参考訳(メタデータ) (2024-01-12T17:50:35Z) - Interruption-Aware Cooperative Perception for V2X Communication-Aided
Autonomous Driving [49.42873226593071]
本稿では,V2X通信支援自律運転のためのV2X通信入出力対応協調知覚(V2X-INCOP)を提案する。
我々は、過去の協力情報を用いて、割り込みによる行方不明情報を復元し、割り込み問題の影響を軽減する。
3つの公的な協調認識データセットの実験から,コミュニケーション中断が協調知覚に与える影響を緩和するために提案手法が有効であることが示された。
論文 参考訳(メタデータ) (2023-04-24T04:59:13Z) - Designing Decision Support Systems for Emergency Response: Challenges
and Opportunities [3.8532022064807827]
道路事故等の事故に対応する緊急対応管理システム(ERM)は,地域社会が直面している大きな問題である。
本稿では,重要な課題を取り上げ,我々のチームがコミュニティパートナと共同で開発したアプローチの概要を紹介する。
論文 参考訳(メタデータ) (2022-02-23T02:02:32Z) - Adversarial Attacks On Multi-Agent Communication [80.4392160849506]
現代の自律システムはすぐに大規模に展開され、協調型マルチエージェントシステムの可能性を広げる。
このような利点は、セキュリティ侵害に対して脆弱であることが示されている通信チャネルに大きく依存している。
本稿では,エージェントが学習した中間表現を共有してコミュニケーションする新しいマルチエージェント環境において,このような攻撃を探索する。
論文 参考訳(メタデータ) (2021-01-17T00:35:26Z) - Emergency Incident Detection from Crowdsourced Waze Data using Bayesian
Information Fusion [4.039649741925056]
本稿では,ノイズの多いクラウドソーシングWazeデータを用いた緊急インシデント検出手法を提案する。
本稿では,クラウドレポートの信頼性の不確かさをモデル化するための観測理論に基づく計算手法を提案する。
論文 参考訳(メタデータ) (2020-11-10T22:45:03Z) - Learning to Communicate and Correct Pose Errors [75.03747122616605]
本稿では、V2VNetで提案された設定について検討し、近くにある自動運転車が共同で物体検出と動き予測を協調的に行う方法を提案する。
本稿では,コミュニケーションを学習し,潜在的な誤りを推定し,それらの誤りについてコンセンサスを得るための新しいニューラルネットワーク推論フレームワークを提案する。
論文 参考訳(メタデータ) (2020-11-10T18:19:40Z) - Epidemic mitigation by statistical inference from contact tracing data [61.04165571425021]
我々は,個人が感染するリスクを推定するためにベイズ推定法を開発した。
本稿では,感染防止のための検査・隔離戦略を最適化するために,確率論的リスク推定手法を提案する。
我々のアプローチは、最近接触した個人間の通信のみを必要とする、完全に分散されたアルゴリズムに変換されます。
論文 参考訳(メタデータ) (2020-09-20T12:24:45Z) - Towards robust sensing for Autonomous Vehicles: An adversarial
perspective [82.83630604517249]
結果として得られる決定が摂動に対して堅牢であることは、最も重要なことです。
敵対的摂動は、意図的に環境や感覚測定の修正を施したものである。
より安全なシステムの構築とデプロイには,センサーシステムの脆弱性を慎重に評価する必要がある。
論文 参考訳(メタデータ) (2020-07-14T05:25:15Z) - Improving Community Resiliency and Emergency Response With Artificial
Intelligence [0.05541644538483946]
我々は、ステークホルダーが包括的で関連性があり、信頼できる情報にタイムリーにアクセスできるようにする、多段階の緊急対応ツールを目指しています。
本ツールは, 浸水リスク位置, 道路ネットワーク強度, 浸水マップ, 浸水地や被害インフラを推定するコンピュータビジョンセマンティックセマンティックセマンティックセグメンテーションなど, オープンソースの地理空間データの複数の層を符号化して構成する。
これらのデータレイヤを組み合わせて、緊急時の避難経路の検索や、最初に影響を受けたエリアで最初の応答者のために利用可能な宿泊場所のリストを提供するなど、機械学習アルゴリズムの入力データとして利用する。
論文 参考訳(メタデータ) (2020-05-28T18:05:08Z) - On Algorithmic Decision Procedures in Emergency Response Systems in
Smart and Connected Communities [21.22596396400625]
緊急対応管理(ERM)は、世界中のコミュニティが直面している重要な問題である。
我々は、ERMシステムの計画の重要な期間は、事故後ではなく、事故間にあると論じる。
本稿では,ディスパッチ問題の構造を活用・活用する2つの部分分散マルチエージェント計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-01-21T07:04:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。