論文の概要: Efficient VoIP Communications through LLM-based Real-Time Speech Reconstruction and Call Prioritization for Emergency Services
- arxiv url: http://arxiv.org/abs/2412.16176v1
- Date: Mon, 09 Dec 2024 17:22:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-29 08:29:32.731062
- Title: Efficient VoIP Communications through LLM-based Real-Time Speech Reconstruction and Call Prioritization for Emergency Services
- Title(参考訳): LLMを用いたリアルタイム音声合成と緊急通話の優先化による高能率VoIP通信
- Authors: Danush Venkateshperumal, Rahman Abdul Rafi, Shakil Ahmed, Ashfaq Khokhar,
- Abstract要約: 緊急通信システムは、パケット損失、帯域制限、信号品質の低下、遅延、VoIPシステムのジッタによる破壊に直面している。
苦悩の被害者はしばしば、パニック、発声障害、背景雑音による重要な情報を伝えるのに苦労する。
本稿では,不完全な音声を再構成し,文脈的ギャップを埋め,重大度に基づく呼の優先順位付けを行うことにより,これらの課題に対処するためにLarge Language Models(LLMs)を活用することを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Emergency communication systems face disruptions due to packet loss, bandwidth constraints, poor signal quality, delays, and jitter in VoIP systems, leading to degraded real-time service quality. Victims in distress often struggle to convey critical information due to panic, speech disorders, and background noise, further complicating dispatchers' ability to assess situations accurately. Staffing shortages in emergency centers exacerbate delays in coordination and assistance. This paper proposes leveraging Large Language Models (LLMs) to address these challenges by reconstructing incomplete speech, filling contextual gaps, and prioritizing calls based on severity. The system integrates real-time transcription with Retrieval-Augmented Generation (RAG) to generate contextual responses, using Twilio and AssemblyAI APIs for seamless implementation. Evaluation shows high precision, favorable BLEU and ROUGE scores, and alignment with real-world needs, demonstrating the model's potential to optimize emergency response workflows and prioritize critical cases effectively.
- Abstract(参考訳): 緊急通信システムは、パケット損失、帯域幅の制約、信号品質の低下、VoIPシステムの遅延、ジッタによって破壊され、リアルタイムのサービス品質が劣化する。
苦悩の被害者はしばしば、パニック、発声障害、背景雑音による重要な情報を伝えるのに苦労し、さらに事態を正確に評価する能力が複雑になる。
救急センターの人員不足は、調整と援助の遅れを悪化させる。
本稿では,不完全音声の再構成,文脈的ギャップの埋め合わせ,重大度に基づく呼び出しの優先順位付けなどにより,これらの課題に対処するためにLarge Language Models(LLMs)を活用することを提案する。
このシステムはリアルタイムの書き起こしをRetrieval-Augmented Generation (RAG)と統合してコンテキスト応答を生成する。
評価は、高精度で好ましいBLEUとROUGEのスコアを示し、実際のニーズと一致し、緊急対応ワークフローを最適化し、重要なケースを効果的に優先順位付けするモデルの可能性を示す。
関連論文リスト
- Multilingual Standalone Trustworthy Voice-Based Social Network for Disaster Situations [2.157955801263362]
災害の場合、効果的なコミュニケーションは不可欠であるが、言語障壁は時折正確な情報伝達を妨げることが多い。
本稿では,これらの課題に対処するための新しい多言語音声ベースのソーシャルネットワークを提案する。
提案システムは、高度な人工知能(AI)とブロックチェーン技術を統合し、複数の言語間でセキュアで非同期な音声通信を可能にする。
論文 参考訳(メタデータ) (2024-10-28T03:24:37Z) - Predictive Speech Recognition and End-of-Utterance Detection Towards Spoken Dialog Systems [55.99999020778169]
本稿では,次の単語を予測し,発話終了まで残される時間を推定する機能について検討する。
我々は,音響情報と言語情報の両方を組み込んだクロスアテンションに基づくアルゴリズムを開発した。
その結果,提案モデルでは,提案する単語を予測し,将来のEOUイベントを実際のEOUより300ミリ秒前まで推定する能力を示した。
論文 参考訳(メタデータ) (2024-09-30T06:29:58Z) - Hypergame Theory for Decentralized Resource Allocation in Multi-user Semantic Communications [60.63472821600567]
マルチユーザSCシステムにおける分散コンピューティングと通信資源割り当てのための新しいフレームワークを提案する。
通信資源と計算資源を効率的に割り当てることの課題は、Stackelbergハイパーゲーム理論の適用によって解決される。
シミュレーションの結果,提案したStackelbergハイパーゲームは通信資源と計算資源を効率的に利用することができることがわかった。
論文 参考訳(メタデータ) (2024-09-26T15:55:59Z) - VALL-E R: Robust and Efficient Zero-Shot Text-to-Speech Synthesis via Monotonic Alignment [101.2489492032816]
VALL-E Rは、堅牢で効率的なゼロショットテキスト音声合成システムである。
この研究は、失語症に罹患した人々のためのスピーチの作成を含む有意義なプロジェクトに適用される可能性がある。
論文 参考訳(メタデータ) (2024-06-12T04:09:44Z) - PRoDeliberation: Parallel Robust Deliberation for End-to-End Spoken Language Understanding [44.77985942208969]
PRoDeliberationは、コネクショニストの時間分類に基づくデコード戦略を活用する新しい手法であり、堅牢な非自己回帰的デリベレーションモデルをトレーニングするための認知的目標である。
PRoDeliberationは,自動音声認識(ASR)の誤り書き起こしを補正する能力を維持しつつ,並列デコーディングの遅延低減(自己回帰モデルよりも2~10倍改善)を実現していることを示す。
論文 参考訳(メタデータ) (2024-06-12T02:46:17Z) - Using External Off-Policy Speech-To-Text Mappings in Contextual
End-To-End Automated Speech Recognition [19.489794740679024]
本稿では,外部知識の活用の可能性について検討する。
提案手法では,音声の音声埋め込みと意味的テキスト埋め込みを併用して,ASRに偏りを生じさせる。
LibiriSpeechと社内音声アシスタント/検索データセットの実験により、提案手法により、最大1KのGPU時間でドメイン適応時間を短縮できることが示された。
論文 参考訳(メタデータ) (2023-01-06T22:32:50Z) - Age of Semantics in Cooperative Communications: To Expedite Simulation
Towards Real via Offline Reinforcement Learning [53.18060442931179]
協調リレー通信システムにおける状態更新のセマンティックス更新度を測定するための意味学年代(AoS)を提案する。
オンライン・ディープ・アクター・クリティック(DAC)学習手法を,政治時間差学習の枠組みに基づいて提案する。
そこで我々は,以前に収集したデータセットから最適制御ポリシーを推定する,新しいオフラインDAC方式を提案する。
論文 参考訳(メタデータ) (2022-09-19T11:55:28Z) - Accelerating Federated Edge Learning via Optimized Probabilistic Device
Scheduling [57.271494741212166]
本稿では,通信時間最小化問題を定式化し,解決する。
最適化されたポリシーは、トレーニングプロセスが進むにつれて、残りの通信ラウンドの抑制から、ラウンドごとのレイテンシの低減へと、徐々に優先順位を転換している。
提案手法の有効性は,自律運転における協調的3次元目標検出のユースケースを通じて実証される。
論文 参考訳(メタデータ) (2021-07-24T11:39:17Z) - Communication-Efficient Split Learning Based on Analog Communication and
Over the Air Aggregation [48.150466900765316]
スプリットラーニング(SL)は、その固有のプライバシー保護機能と、限られた計算能力を持つデバイスに対する協調推論を可能にする能力により、最近人気を集めている。
標準SLアルゴリズムは、理想的なデジタル通信システムを想定し、通信帯域不足の問題を無視している。
本稿では,エージェント側で追加層を導入し,重みとバイアスの選択を制約し,空気の凝集を確実にするための新しいSLフレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-02T07:49:41Z) - Improving Community Resiliency and Emergency Response With Artificial
Intelligence [0.05541644538483946]
我々は、ステークホルダーが包括的で関連性があり、信頼できる情報にタイムリーにアクセスできるようにする、多段階の緊急対応ツールを目指しています。
本ツールは, 浸水リスク位置, 道路ネットワーク強度, 浸水マップ, 浸水地や被害インフラを推定するコンピュータビジョンセマンティックセマンティックセマンティックセグメンテーションなど, オープンソースの地理空間データの複数の層を符号化して構成する。
これらのデータレイヤを組み合わせて、緊急時の避難経路の検索や、最初に影響を受けたエリアで最初の応答者のために利用可能な宿泊場所のリストを提供するなど、機械学習アルゴリズムの入力データとして利用する。
論文 参考訳(メタデータ) (2020-05-28T18:05:08Z) - On Algorithmic Decision Procedures in Emergency Response Systems in
Smart and Connected Communities [21.22596396400625]
緊急対応管理(ERM)は、世界中のコミュニティが直面している重要な問題である。
我々は、ERMシステムの計画の重要な期間は、事故後ではなく、事故間にあると論じる。
本稿では,ディスパッチ問題の構造を活用・活用する2つの部分分散マルチエージェント計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-01-21T07:04:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。