論文の概要: Unsupervised Deep Learning Image Verification Method
- arxiv url: http://arxiv.org/abs/2312.14395v1
- Date: Fri, 22 Dec 2023 02:52:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-25 16:28:22.663458
- Title: Unsupervised Deep Learning Image Verification Method
- Title(参考訳): 教師なし深層学習画像検証法
- Authors: Enoch Solomon, Abraham Woubie and Eyael Solomon Emiru
- Abstract要約: 提案手法は,Wildデータセットのラベル付き顔のベースラインシステムよりもEERの56%の相対的な改善を実現している。
これにより、コサインとPLDAのスコアリングシステムのパフォーマンスギャップを狭めることに成功した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Although deep learning are commonly employed for image recognition, usually
huge amount of labeled training data is required, which may not always be
readily available. This leads to a noticeable performance disparity when
compared to state-of-the-art unsupervised face verification techniques. In this
work, we propose a method to narrow this gap by leveraging an autoencoder to
convert the face image vector into a novel representation. Notably, the
autoencoder is trained to reconstruct neighboring face image vectors rather
than the original input image vectors. These neighbor face image vectors are
chosen through an unsupervised process based on the highest cosine scores with
the training face image vectors. The proposed method achieves a relative
improvement of 56\% in terms of EER over the baseline system on Labeled Faces
in the Wild (LFW) dataset. This has successfully narrowed down the performance
gap between cosine and PLDA scoring systems.
- Abstract(参考訳): ディープラーニングは一般的に画像認識に使用されるが、通常は大量のラベル付きトレーニングデータが必要である。
これにより、最先端の教師なし顔認証技術と比較すると、顕著な性能格差が生じる。
本研究では,顔画像ベクトルを新しい表現に変換するオートエンコーダを利用して,このギャップを狭める手法を提案する。
特に、オートエンコーダは、元の入力画像ベクトルではなく、隣接する顔画像ベクトルを再構成するように訓練される。
これらの隣接顔画像ベクトルは、訓練顔画像ベクトルとの最高コサインスコアに基づいて教師なしプロセスにより選択される。
提案手法は,野生(lfw)データセットのラベル付き顔のベースラインシステム上でのeerの相対的改善を56\%達成する。
これにより、コサインとPLDAスコアリングシステムのパフォーマンスギャップを狭めることに成功した。
関連論文リスト
- Co-Segmentation without any Pixel-level Supervision with Application to Large-Scale Sketch Classification [3.3104978705632777]
画像の集合における共通物体の画素レベルの局所化という,オブジェクトの分離のための新しい手法を提案する。
この方法は、同じレベルの監督で訓練された方法のうち、最先端のパフォーマンスを達成する。
大規模スケッチ認識の課題において,提案手法の利点をさらに示す。
論文 参考訳(メタデータ) (2024-10-17T14:16:45Z) - CricaVPR: Cross-image Correlation-aware Representation Learning for Visual Place Recognition [73.51329037954866]
視覚的位置認識のための画像間相関認識を用いたロバストなグローバル表現手法を提案する。
本手法では,バッチ内の複数の画像の相関にアテンション機構を用いる。
本手法は,訓練時間を大幅に短縮し,最先端の手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2024-02-29T15:05:11Z) - Regressing Transformers for Data-efficient Visual Place Recognition [10.156432076272475]
この研究は、レグレッション問題としての場所認識をフレーミングすることで、新しい視点を導入する。
画像ディスクリプタをグレード付き類似ラベルと直接整合するように最適化することにより、高価な再ランク付けなしでランキング機能を向上させる。
論文 参考訳(メタデータ) (2024-01-29T17:04:32Z) - Improving Masked Autoencoders by Learning Where to Mask [65.89510231743692]
マスケ画像モデリングは視覚データに対する有望な自己教師型学習手法である。
本稿では,Gumbel-Softmax を用いて,対向学習マスク生成装置とマスク誘導画像モデリングプロセスとを相互接続するフレームワーク AutoMAE を提案する。
実験の結果,AutoMAEは,標準の自己監督型ベンチマークや下流タスクに対して,効果的な事前学習モデルを提供することがわかった。
論文 参考訳(メタデータ) (2023-03-12T05:28:55Z) - Masked Autoencoders Are Scalable Vision Learners [60.97703494764904]
Masked Autoencoders (MAE) は、コンピュータビジョンのためのスケーラブルな自己教師型学習システムである。
我々は入力画像のランダムなパッチを隠蔽し、欠落したピクセルを再構成する。
これら2つの設計を結合することで,大規模モデルを効率的かつ効率的にトレーニングすることが可能になります。
論文 参考訳(メタデータ) (2021-11-11T18:46:40Z) - Inverse Problems Leveraging Pre-trained Contrastive Representations [88.70821497369785]
破損したデータの表現を復元するための新しい逆問題群について検討する。
コントラスト目的を用いた教師付きインバージョン手法を提案する。
提案手法は,幅広いフォワード演算子においてラベル付きデータのごく一部であっても,エンド・ツー・エンドのベースラインよりも優れる。
論文 参考訳(メタデータ) (2021-10-14T15:06:30Z) - Self-supervised Product Quantization for Deep Unsupervised Image
Retrieval [21.99902461562925]
改良されたディープラーニングベースのハッシュとベクトル量子化は、高速で大規模な画像検索システムを実現する。
本稿では,SPQ (Self-supervised Product Quantization) ネットワークと呼ばれる,ラベルフリーで,自己教師型で訓練された画像検索手法を提案する。
提案手法は,画像内容を分析して記述的特徴を抽出し,正確な検索のための画像表現の理解を可能にする。
論文 参考訳(メタデータ) (2021-09-06T05:02:34Z) - AugNet: End-to-End Unsupervised Visual Representation Learning with
Image Augmentation [3.6790362352712873]
我々は、未ラベル画像の集合から画像特徴を学習するための新しいディープラーニングトレーニングパラダイムであるAugNetを提案する。
実験により,低次元空間における画像の表現が可能であることを実証した。
多くのディープラーニングベースの画像検索アルゴリズムとは異なり、我々のアプローチは外部アノテーション付きデータセットへのアクセスを必要としない。
論文 参考訳(メタデータ) (2021-06-11T09:02:30Z) - CutPaste: Self-Supervised Learning for Anomaly Detection and
Localization [59.719925639875036]
通常のトレーニングデータのみを用いて異常検知器を構築するためのフレームワークを提案する。
まず、自己教師付き深層表現を学習し、学習した表現の上に生成的1クラス分類器を構築する。
MVTec異常検出データセットに関する実証研究は,提案アルゴリズムが実世界の様々な欠陥を検出可能であることを実証している。
論文 参考訳(メタデータ) (2021-04-08T19:04:55Z) - G-SimCLR : Self-Supervised Contrastive Learning with Guided Projection
via Pseudo Labelling [0.8164433158925593]
コンピュータビジョンにおいて、ディープニューラルネットワークは大量のラベル付きデータを持つ教師付き設定において、より良い性能を発揮することが明らかである。
本研究では, 温度スケールクロスエントロピー(NT-Xent)損失関数の正規化により, 同じカテゴリの画像が同じバッチにない方が有益であることを示す。
我々は、ラベルのないデータセットで訓練された復号化オートエンコーダの潜在空間表現を使用し、それらをk平均でクラスタリングして擬似ラベルを得る。
論文 参考訳(メタデータ) (2020-09-25T02:25:37Z) - Distilling Localization for Self-Supervised Representation Learning [82.79808902674282]
コントラスト学習は教師なし表現学習に革命をもたらした。
現在のコントラストモデルでは、前景オブジェクトのローカライズには効果がない。
本稿では,背景変化を学習するためのデータ駆動型手法を提案する。
論文 参考訳(メタデータ) (2020-04-14T16:29:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。