論文の概要: Co-Segmentation without any Pixel-level Supervision with Application to Large-Scale Sketch Classification
- arxiv url: http://arxiv.org/abs/2410.13582v1
- Date: Thu, 17 Oct 2024 14:16:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-18 13:19:34.617701
- Title: Co-Segmentation without any Pixel-level Supervision with Application to Large-Scale Sketch Classification
- Title(参考訳): 画素レベルのスーパービジョンを持たないコセグメンテーションと大規模スケッチ分類への応用
- Authors: Nikolaos-Antonios Ypsilantis, Ondřej Chum,
- Abstract要約: 画像の集合における共通物体の画素レベルの局所化という,オブジェクトの分離のための新しい手法を提案する。
この方法は、同じレベルの監督で訓練された方法のうち、最先端のパフォーマンスを達成する。
大規模スケッチ認識の課題において,提案手法の利点をさらに示す。
- 参考スコア(独自算出の注目度): 3.3104978705632777
- License:
- Abstract: This work proposes a novel method for object co-segmentation, i.e. pixel-level localization of a common object in a set of images, that uses no pixel-level supervision for training. Two pre-trained Vision Transformer (ViT) models are exploited: ImageNet classification-trained ViT, whose features are used to estimate rough object localization through intra-class token relevance, and a self-supervised DINO-ViT for intra-image token relevance. On recent challenging benchmarks, the method achieves state-of-the-art performance among methods trained with the same level of supervision (image labels) while being competitive with methods trained with pixel-level supervision (binary masks). The benefits of the proposed co-segmentation method are further demonstrated in the task of large-scale sketch recognition, that is, the classification of sketches into a wide range of categories. The limited amount of hand-drawn sketch training data is leveraged by exploiting readily available image-level-annotated datasets of natural images containing a large number of classes. To bridge the domain gap, the classifier is trained on a sketch-like proxy domain derived from edges detected on natural images. We show that sketch recognition significantly benefits when the classifier is trained on sketch-like structures extracted from the co-segmented area rather than from the full image. Code: https://github.com/nikosips/CBNC .
- Abstract(参考訳): 本研究は,画像の集合における共通物体の画素レベルの局在化という,物体分離のための新しい手法を提案する。
2つの事前訓練されたビジョントランスフォーマー(ViT)モデルが利用される: ImageNet 分類訓練されたViTは、クラス内のトークン関連性を通じて粗いオブジェクトのローカライゼーションを推定するために使用される。
最近の挑戦的なベンチマークでは、同じレベルの監督(イメージラベル)で訓練されたメソッド間で、ピクセルレベルの監督(バイナリマスク)で訓練されたメソッドと競合しながら、最先端のパフォーマンスを達成する。
提案手法の利点は,大規模なスケッチ認識,すなわちスケッチを幅広いカテゴリに分類する作業においてさらに実証される。
手書きスケッチトレーニングデータの限られた量は、多数のクラスを含む自然画像の、手軽に利用可能な画像レベルの注釈付きデータセットを活用することで活用される。
ドメインギャップを埋めるために、自然な画像で検出されたエッジから派生したスケッチのようなプロキシドメインで分類器を訓練する。
画像全体からではなく,共同領域から抽出したスケッチ状構造に基づいて分類器を訓練した場合に,スケッチ認識が有益であることを示す。
コード:https://github.com/nikosips/CBNC
関連論文リスト
- Towards Open-Vocabulary Semantic Segmentation Without Semantic Labels [53.8817160001038]
画素レベルの理解にCLIP画像エンコーダを適用する新しい手法であるPixelCLIPを提案する。
セマンティックラベルを使わずにマスクを活用するという課題に対処するため,オンラインクラスタリングアルゴリズムを考案した。
PixelCLIPはCLIPよりも大幅にパフォーマンスが向上し、キャプション管理手法に比べて競合性が向上した。
論文 参考訳(メタデータ) (2024-09-30T01:13:03Z) - Exploring Multi-view Pixel Contrast for General and Robust Image Forgery Localization [4.8454936010479335]
本稿では,画像フォージェリーローカライゼーションのための多視点Pixel-wise Contrastive Algorithm (MPC)を提案する。
具体的には、まず、教師付きコントラスト損失を伴うバックボーンネットワークを事前訓練する。
次に、クロスエントロピー損失を用いてローカライゼーションヘッドを微調整し、ピクセルローカライザを改良する。
論文 参考訳(メタデータ) (2024-06-19T13:51:52Z) - Pixel-Level Clustering Network for Unsupervised Image Segmentation [3.69853388955692]
画像の領域分割のためのピクセルレベルのクラスタリングフレームワークを,地上の真理アノテーションを使わずに提案する。
また、各スーパーピクセル間の一貫性、隣接するスーパーピクセル間の相似性/相似性、画像間の構造的類似性を利用したトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2023-10-24T23:06:29Z) - Exploring Open-Vocabulary Semantic Segmentation without Human Labels [76.15862573035565]
我々は、既存の事前学習された視覚言語モデル(VL)を利用して意味的セグメンテーションモデルを訓練するZeroSegを提案する。
ZeroSegは、VLモデルで学んだ視覚概念をセグメントトークンの集合に蒸留することでこれを克服し、それぞれが対象画像の局所化領域を要約する。
提案手法は,他のゼロショットセグメンテーション法と比較して,同じトレーニングデータを用いた場合と比較して,最先端性能を実現する。
論文 参考訳(メタデータ) (2023-06-01T08:47:06Z) - CSP: Self-Supervised Contrastive Spatial Pre-Training for
Geospatial-Visual Representations [90.50864830038202]
ジオタグ付き画像の自己教師型学習フレームワークであるContrastive Spatial Pre-Training(CSP)を提案する。
デュアルエンコーダを用いて画像とその対応する位置情報を別々に符号化し、コントラスト目的を用いて画像から効果的な位置表現を学習する。
CSPは、様々なラベル付きトレーニングデータサンプリング比と10~34%の相対的な改善で、モデル性能を大幅に向上させる。
論文 参考訳(メタデータ) (2023-05-01T23:11:18Z) - Neural Congealing: Aligning Images to a Joint Semantic Atlas [14.348512536556413]
画像の集合を横断的に意味的に共通するコンテンツを調整するための,ゼロショットの自己教師型フレームワークを提案する。
提案手法は,DINO-ViTの事前学習能力を利用して学習する。
提案手法は,大規模データセットに対する広範囲なトレーニングを必要とする最先端の手法と比較して,好適に動作することを示す。
論文 参考訳(メタデータ) (2023-02-08T09:26:22Z) - LEAD: Self-Supervised Landmark Estimation by Aligning Distributions of
Feature Similarity [49.84167231111667]
自己監督型ランドマーク検出における既存の研究は、画像から高密度(ピクセルレベルの)特徴表現を学習することに基づいている。
自己教師付き方式で高密度同変表現の学習を強化するアプローチを提案する。
機能抽出器にそのような先行性があることは,アノテーションの数が大幅に制限されている場合でも,ランドマーク検出に役立ちます。
論文 参考訳(メタデータ) (2022-04-06T17:48:18Z) - Learning Contrastive Representation for Semantic Correspondence [150.29135856909477]
セマンティックマッチングのためのマルチレベルコントラスト学習手法を提案する。
画像レベルのコントラスト学習は、畳み込み特徴が類似したオブジェクト間の対応を見出すための鍵となる要素であることを示す。
論文 参考訳(メタデータ) (2021-09-22T18:34:14Z) - Semantic Segmentation with Generative Models: Semi-Supervised Learning
and Strong Out-of-Domain Generalization [112.68171734288237]
本論文では,画像とラベルの再生モデルを用いた識別画素レベルのタスクのための新しいフレームワークを提案する。
我々は,共同画像ラベルの分布を捕捉し,未ラベル画像の大規模な集合を用いて効率的に訓練する生成的対向ネットワークを学習する。
ドメイン内性能をいくつかのベースラインと比較し,ドメイン外一般化を極端に示す最初の例である。
論文 参考訳(メタデータ) (2021-04-12T21:41:25Z) - Deep Active Learning for Joint Classification & Segmentation with Weak
Annotator [22.271760669551817]
クラスアクティベーションマップ(CAM)のようなCNNの可視化と解釈手法は、一般的に、クラス予測に関連する画像領域を強調するために使用される。
本稿では,画素レベルのアノテーションを段階的に統合する能動的学習フレームワークを提案する。
提案手法は, ランダムなサンプル選択を用いることで, 最先端のCAMやAL手法よりも優れた性能を示すことを示す。
論文 参考訳(メタデータ) (2020-10-10T03:25:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。