How to Overcome Curse-of-Dimensionality for Out-of-Distribution
Detection?
- URL: http://arxiv.org/abs/2312.14452v1
- Date: Fri, 22 Dec 2023 06:04:09 GMT
- Title: How to Overcome Curse-of-Dimensionality for Out-of-Distribution
Detection?
- Authors: Soumya Suvra Ghosal, Yiyou Sun, and Yixuan Li
- Abstract summary: We propose a novel framework, Subspace Nearest Neighbor (SNN), for OOD detection.
In training, our method regularizes the model and its feature representation by leveraging the most relevant subset of dimensions.
Compared to the current best distance-based method, SNN reduces the average FPR95 by 15.96% on the CIFAR-100 benchmark.
- Score: 29.668859994222238
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning models deployed in the wild can be challenged by
out-of-distribution (OOD) data from unknown classes. Recent advances in OOD
detection rely on distance measures to distinguish samples that are relatively
far away from the in-distribution (ID) data. Despite the promise,
distance-based methods can suffer from the curse-of-dimensionality problem,
which limits the efficacy in high-dimensional feature space. To combat this
problem, we propose a novel framework, Subspace Nearest Neighbor (SNN), for OOD
detection. In training, our method regularizes the model and its feature
representation by leveraging the most relevant subset of dimensions (i.e.
subspace). Subspace learning yields highly distinguishable distance measures
between ID and OOD data. We provide comprehensive experiments and ablations to
validate the efficacy of SNN. Compared to the current best distance-based
method, SNN reduces the average FPR95 by 15.96% on the CIFAR-100 benchmark.
Related papers
- What If the Input is Expanded in OOD Detection? [77.37433624869857]
Out-of-distribution (OOD) detection aims to identify OOD inputs from unknown classes.
Various scoring functions are proposed to distinguish it from in-distribution (ID) data.
We introduce a novel perspective, i.e., employing different common corruptions on the input space.
arXiv Detail & Related papers (2024-10-24T06:47:28Z) - Look Around and Find Out: OOD Detection with Relative Angles [24.369626931550794]
We propose a novel angle-based metric for OOD detection that is computed relative to the in-distribution structure.
Our method achieves state-of-the-art performance on CIFAR-10 and ImageNet benchmarks, reducing FPR95 by 0.88% and 7.74% respectively.
arXiv Detail & Related papers (2024-10-06T15:36:07Z) - Fast Decision Boundary based Out-of-Distribution Detector [7.04686607977352]
Out-of-Distribution (OOD) detection is essential for the safe deployment of AI systems.
Existing feature space methods, while effective, often incur significant computational overhead.
We propose a computationally-efficient OOD detector without using auxiliary models.
arXiv Detail & Related papers (2023-12-15T19:50:32Z) - EAT: Towards Long-Tailed Out-of-Distribution Detection [55.380390767978554]
This paper addresses the challenging task of long-tailed OOD detection.
The main difficulty lies in distinguishing OOD data from samples belonging to the tail classes.
We propose two simple ideas: (1) Expanding the in-distribution class space by introducing multiple abstention classes, and (2) Augmenting the context-limited tail classes by overlaying images onto the context-rich OOD data.
arXiv Detail & Related papers (2023-12-14T13:47:13Z) - Model-free Test Time Adaptation for Out-Of-Distribution Detection [62.49795078366206]
We propose a Non-Parametric Test Time textbfAdaptation framework for textbfDistribution textbfDetection (abbr)
abbr utilizes online test samples for model adaptation during testing, enhancing adaptability to changing data distributions.
We demonstrate the effectiveness of abbr through comprehensive experiments on multiple OOD detection benchmarks.
arXiv Detail & Related papers (2023-11-28T02:00:47Z) - From Global to Local: Multi-scale Out-of-distribution Detection [129.37607313927458]
Out-of-distribution (OOD) detection aims to detect "unknown" data whose labels have not been seen during the in-distribution (ID) training process.
Recent progress in representation learning gives rise to distance-based OOD detection.
We propose Multi-scale OOD DEtection (MODE), a first framework leveraging both global visual information and local region details.
arXiv Detail & Related papers (2023-08-20T11:56:25Z) - Augmenting Softmax Information for Selective Classification with
Out-of-Distribution Data [7.221206118679026]
We show that existing post-hoc methods perform quite differently compared to when evaluated only on OOD detection.
We propose a novel method for SCOD, Softmax Information Retaining Combination (SIRC), that augments softmax-based confidence scores with feature-agnostic information.
Experiments on a wide variety of ImageNet-scale datasets and convolutional neural network architectures show that SIRC is able to consistently match or outperform the baseline for SCOD.
arXiv Detail & Related papers (2022-07-15T14:39:57Z) - Out-of-distribution Detection with Deep Nearest Neighbors [33.71627349163909]
Out-of-distribution (OOD) detection is a critical task for deploying machine learning models in the open world.
In this paper, we explore the efficacy of non-parametric nearest-neighbor distance for OOD detection.
We demonstrate the effectiveness of nearest-neighbor-based OOD detection on several benchmarks and establish superior performance.
arXiv Detail & Related papers (2022-04-13T16:45:21Z) - Adversarial vulnerability of powerful near out-of-distribution detection [8.446798721296906]
We show a severe adversarial vulnerability of even the strongest current OOD detection techniques.
With a small, targeted perturbation to the input pixels, we can change the image assignment from an in-distribution to an out-distribution, easily.
arXiv Detail & Related papers (2022-01-18T14:23:07Z) - No True State-of-the-Art? OOD Detection Methods are Inconsistent across
Datasets [69.725266027309]
Out-of-distribution detection is an important component of reliable ML systems.
In this work, we show that none of these methods are inherently better at OOD detection than others on a standardized set of 16 pairs.
We also show that a method outperforming another on a certain (ID, OOD) pair may not do so in a low-data regime.
arXiv Detail & Related papers (2021-09-12T16:35:00Z) - Robust Out-of-distribution Detection for Neural Networks [51.19164318924997]
We show that existing detection mechanisms can be extremely brittle when evaluating on in-distribution and OOD inputs.
We propose an effective algorithm called ALOE, which performs robust training by exposing the model to both adversarially crafted inlier and outlier examples.
arXiv Detail & Related papers (2020-03-21T17:46:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.