MetaAID 2.5: A Secure Framework for Developing Metaverse Applications
via Large Language Models
- URL: http://arxiv.org/abs/2312.14480v1
- Date: Fri, 22 Dec 2023 07:15:55 GMT
- Title: MetaAID 2.5: A Secure Framework for Developing Metaverse Applications
via Large Language Models
- Authors: Hongyin Zhu
- Abstract summary: Large language models (LLMs) are increasingly being used in Metaverse environments to generate dynamic and realistic content.
This paper proposes a method for enhancing cybersecurity through the simulation of user interaction with LLMs.
- Score: 0.9463895540925061
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) are increasingly being used in Metaverse
environments to generate dynamic and realistic content and to control the
behavior of non-player characters (NPCs). However, the cybersecurity concerns
associated with LLMs have become increasingly prominent. Previous research has
primarily focused on patching system vulnerabilities to enhance cybersecurity,
but these approaches are not well-suited to the Metaverse, where the virtual
space is more complex, LLMs are vulnerable, and ethical user interaction is
critical. Moreover, the scope of cybersecurity in the Metaverse is expected to
expand significantly. This paper proposes a method for enhancing cybersecurity
through the simulation of user interaction with LLMs. Our goal is to educate
users and strengthen their defense capabilities through exposure to a
comprehensive simulation system. This system includes extensive Metaverse
cybersecurity Q&A and attack simulation scenarios. By engaging with these,
users will improve their ability to recognize and withstand risks.
Additionally, to address the ethical implications of user input, we propose
using LLMs as evaluators to assess user content across five dimensions. We
further adapt the models through vocabulary expansion training to better
understand personalized inputs and emoticons. We conduct experiments on
multiple LLMs and find that our approach is effective.
Related papers
- SoK: Prompt Hacking of Large Language Models [5.056128048855064]
The safety and robustness of large language models (LLMs) based applications remain critical challenges in artificial intelligence.
We offer a comprehensive and systematic overview of three distinct types of prompt hacking: jailbreaking, leaking, and injection.
We propose a novel framework that categorizes LLM responses into five distinct classes, moving beyond the traditional binary classification.
arXiv Detail & Related papers (2024-10-16T01:30:41Z) - Compromising Embodied Agents with Contextual Backdoor Attacks [69.71630408822767]
Large language models (LLMs) have transformed the development of embodied intelligence.
This paper uncovers a significant backdoor security threat within this process.
By poisoning just a few contextual demonstrations, attackers can covertly compromise the contextual environment of a black-box LLM.
arXiv Detail & Related papers (2024-08-06T01:20:12Z) - "Glue pizza and eat rocks" -- Exploiting Vulnerabilities in Retrieval-Augmented Generative Models [74.05368440735468]
Retrieval-Augmented Generative (RAG) models enhance Large Language Models (LLMs)
In this paper, we demonstrate a security threat where adversaries can exploit the openness of these knowledge bases.
arXiv Detail & Related papers (2024-06-26T05:36:23Z) - Defending Against Social Engineering Attacks in the Age of LLMs [19.364994678178036]
Large Language Models (LLMs) can emulate human conversational patterns and facilitate chat-based social engineering (CSE) attacks.
This study investigates the dual capabilities of LLMs as both facilitators and defenders against CSE threats.
We propose ConvoSentinel, a modular defense pipeline that improves detection at both the message and the conversation levels.
arXiv Detail & Related papers (2024-06-18T04:39:40Z) - Generative AI and Large Language Models for Cyber Security: All Insights You Need [0.06597195879147556]
This paper provides a comprehensive review of the future of cybersecurity through Generative AI and Large Language Models (LLMs)
We explore LLM applications across various domains, including hardware design security, intrusion detection, software engineering, design verification, cyber threat intelligence, malware detection, and phishing detection.
We present an overview of LLM evolution and its current state, focusing on advancements in models such as GPT-4, GPT-3.5, Mixtral-8x7B, BERT, Falcon2, and LLaMA.
arXiv Detail & Related papers (2024-05-21T13:02:27Z) - RigorLLM: Resilient Guardrails for Large Language Models against Undesired Content [62.685566387625975]
Current mitigation strategies, while effective, are not resilient under adversarial attacks.
This paper introduces Resilient Guardrails for Large Language Models (RigorLLM), a novel framework designed to efficiently moderate harmful and unsafe inputs.
arXiv Detail & Related papers (2024-03-19T07:25:02Z) - Large Language Models in Cybersecurity: State-of-the-Art [4.990712773805833]
The rise of Large Language Models (LLMs) has revolutionized our comprehension of intelligence bringing us closer to Artificial Intelligence.
This study examines the existing literature, providing a thorough characterization of both defensive and adversarial applications of LLMs within the realm of cybersecurity.
arXiv Detail & Related papers (2024-01-30T16:55:25Z) - Fortifying Ethical Boundaries in AI: Advanced Strategies for Enhancing
Security in Large Language Models [3.9490749767170636]
Large language models (LLMs) have revolutionized text generation, translation, and question-answering tasks.
Despite their widespread use, LLMs present challenges such as ethical dilemmas when models are compelled to respond inappropriately.
This paper addresses these challenges by introducing a multi-pronged approach that includes: 1) filtering sensitive vocabulary from user input to prevent unethical responses; 2) detecting role-playing to halt interactions that could lead to 'prison break' scenarios; and 4) extending these methodologies to various LLM derivatives like Multi-Model Large Language Models (MLLMs)
arXiv Detail & Related papers (2024-01-27T08:09:33Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
This paper explores the integration of Large Language Models (LLMs) into Autonomous Driving systems.
LLMs are intelligent decision-makers in behavioral planning, augmented with a safety verifier shield for contextual safety learning.
We present two key studies in a simulated environment: an adaptive LLM-conditioned Model Predictive Control (MPC) and an LLM-enabled interactive behavior planning scheme with a state machine.
arXiv Detail & Related papers (2023-11-28T03:13:09Z) - On Evaluating Adversarial Robustness of Large Vision-Language Models [64.66104342002882]
We evaluate the robustness of large vision-language models (VLMs) in the most realistic and high-risk setting.
In particular, we first craft targeted adversarial examples against pretrained models such as CLIP and BLIP.
Black-box queries on these VLMs can further improve the effectiveness of targeted evasion.
arXiv Detail & Related papers (2023-05-26T13:49:44Z) - Not what you've signed up for: Compromising Real-World LLM-Integrated
Applications with Indirect Prompt Injection [64.67495502772866]
Large Language Models (LLMs) are increasingly being integrated into various applications.
We show how attackers can override original instructions and employed controls using Prompt Injection attacks.
We derive a comprehensive taxonomy from a computer security perspective to systematically investigate impacts and vulnerabilities.
arXiv Detail & Related papers (2023-02-23T17:14:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.