Large Language Models in Cybersecurity: Applications, Vulnerabilities, and Defense Techniques
- URL: http://arxiv.org/abs/2507.13629v1
- Date: Fri, 18 Jul 2025 03:41:18 GMT
- Title: Large Language Models in Cybersecurity: Applications, Vulnerabilities, and Defense Techniques
- Authors: Niveen O. Jaffal, Mohammed Alkhanafseh, David Mohaisen,
- Abstract summary: Large Language Models (LLMs) are transforming cybersecurity by enabling intelligent, adaptive, and automated approaches to threat detection, vulnerability assessment, and incident response.<n>With their advanced language understanding and contextual reasoning, LLMs surpass traditional methods in tackling challenges across domains such as IoT, blockchain, and hardware security.
- Score: 11.217261201018815
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large Language Models (LLMs) are transforming cybersecurity by enabling intelligent, adaptive, and automated approaches to threat detection, vulnerability assessment, and incident response. With their advanced language understanding and contextual reasoning, LLMs surpass traditional methods in tackling challenges across domains such as IoT, blockchain, and hardware security. This survey provides a comprehensive overview of LLM applications in cybersecurity, focusing on two core areas: (1) the integration of LLMs into key cybersecurity domains, and (2) the vulnerabilities of LLMs themselves, along with mitigation strategies. By synthesizing recent advancements and identifying key limitations, this work offers practical insights and strategic recommendations for leveraging LLMs to build secure, scalable, and future-ready cyber defense systems.
Related papers
- Large AI Model-Enabled Secure Communications in Low-Altitude Wireless Networks: Concepts, Perspectives and Case Study [92.15255222408636]
Low-altitude wireless networks (LAWNs) have the potential to revolutionize communications by supporting a range of applications.<n>We investigate some large artificial intelligence model (LAM)-enabled solutions for secure communications in LAWNs.<n>To demonstrate the practical benefits of LAMs for secure communications in LAWNs, we propose a novel LAM-based optimization framework.
arXiv Detail & Related papers (2025-08-01T01:53:58Z) - An LLM-based Self-Evolving Security Framework for 6G Space-Air-Ground Integrated Networks [49.605335601285496]
6G space-air-ground integrated networks (SAGINs) offer ubiquitous coverage for various mobile applications.<n>We propose a novel security framework for SAGINs based on Large Language Models (LLMs)<n>Our framework produces highly accurate security strategies that remain robust against a variety of unknown attacks.
arXiv Detail & Related papers (2025-05-06T04:14:13Z) - From Texts to Shields: Convergence of Large Language Models and Cybersecurity [15.480598518857695]
This report explores the convergence of large language models (LLMs) and cybersecurity.<n>It examines emerging applications of LLMs in software and network security, 5G vulnerability analysis, and generative security engineering.
arXiv Detail & Related papers (2025-05-01T20:01:07Z) - Llama-3.1-FoundationAI-SecurityLLM-Base-8B Technical Report [50.268821168513654]
We present Foundation-Sec-8B, a cybersecurity-focused large language model (LLMs) built on the Llama 3.1 architecture.<n>We evaluate it across both established and new cybersecurity benchmarks, showing that it matches Llama 3.1-70B and GPT-4o-mini in certain cybersecurity-specific tasks.<n>By releasing our model to the public, we aim to accelerate progress and adoption of AI-driven tools in both public and private cybersecurity contexts.
arXiv Detail & Related papers (2025-04-28T08:41:12Z) - Commercial LLM Agents Are Already Vulnerable to Simple Yet Dangerous Attacks [88.84977282952602]
A high volume of recent ML security literature focuses on attacks against aligned large language models (LLMs)<n>In this paper, we analyze security and privacy vulnerabilities that are unique to LLM agents.<n>We conduct a series of illustrative attacks on popular open-source and commercial agents, demonstrating the immediate practical implications of their vulnerabilities.
arXiv Detail & Related papers (2025-02-12T17:19:36Z) - Global Challenge for Safe and Secure LLMs Track 1 [57.08717321907755]
The Global Challenge for Safe and Secure Large Language Models (LLMs) is a pioneering initiative organized by AI Singapore (AISG) and the CyberSG R&D Programme Office (CRPO)
This paper introduces the Global Challenge for Safe and Secure Large Language Models (LLMs), a pioneering initiative organized by AI Singapore (AISG) and the CyberSG R&D Programme Office (CRPO) to foster the development of advanced defense mechanisms against automated jailbreaking attacks.
arXiv Detail & Related papers (2024-11-21T08:20:31Z) - Generative AI in Cybersecurity: A Comprehensive Review of LLM Applications and Vulnerabilities [1.0974825157329373]
This paper provides a comprehensive review of the future of cybersecurity through Generative AI and Large Language Models (LLMs)<n>We explore LLM applications across various domains, including hardware design security, intrusion detection, software engineering, design verification, cyber threat intelligence, malware detection, and phishing detection.<n>We present an overview of LLM evolution and its current state, focusing on advancements in models such as GPT-4, GPT-3.5, Mixtral-8x7B, BERT, Falcon2, and LLaMA.
arXiv Detail & Related papers (2024-05-21T13:02:27Z) - Large Language Models for Cyber Security: A Systematic Literature Review [14.924782327303765]
We conduct a comprehensive review of the literature on the application of Large Language Models in cybersecurity (LLM4Security)<n>We observe that LLMs are being applied to a wide range of cybersecurity tasks, including vulnerability detection, malware analysis, network intrusion detection, and phishing detection.<n>Third, we identify several promising techniques for adapting LLMs to specific cybersecurity domains, such as fine-tuning, transfer learning, and domain-specific pre-training.
arXiv Detail & Related papers (2024-05-08T02:09:17Z) - Benchmarking and Defending Against Indirect Prompt Injection Attacks on Large Language Models [79.0183835295533]
We introduce the first benchmark for indirect prompt injection attacks, named BIPIA, to assess the risk of such vulnerabilities.<n>Our analysis identifies two key factors contributing to their success: LLMs' inability to distinguish between informational context and actionable instructions, and their lack of awareness in avoiding the execution of instructions within external content.<n>We propose two novel defense mechanisms-boundary awareness and explicit reminder-to address these vulnerabilities in both black-box and white-box settings.
arXiv Detail & Related papers (2023-12-21T01:08:39Z) - Purple Llama CyberSecEval: A Secure Coding Benchmark for Language Models [41.068780235482514]
This paper presents CyberSecEval, a comprehensive benchmark developed to help bolster the cybersecurity of Large Language Models (LLMs) employed as coding assistants.
CyberSecEval provides a thorough evaluation of LLMs in two crucial security domains: their propensity to generate insecure code and their level of compliance when asked to assist in cyberattacks.
arXiv Detail & Related papers (2023-12-07T22:07:54Z) - Not what you've signed up for: Compromising Real-World LLM-Integrated
Applications with Indirect Prompt Injection [64.67495502772866]
Large Language Models (LLMs) are increasingly being integrated into various applications.
We show how attackers can override original instructions and employed controls using Prompt Injection attacks.
We derive a comprehensive taxonomy from a computer security perspective to systematically investigate impacts and vulnerabilities.
arXiv Detail & Related papers (2023-02-23T17:14:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.