Time-changed normalizing flows for accurate SDE modeling
- URL: http://arxiv.org/abs/2312.14698v2
- Date: Mon, 15 Jan 2024 21:12:03 GMT
- Title: Time-changed normalizing flows for accurate SDE modeling
- Authors: Naoufal El Bekri and Lucas Drumetz and Franck Vermet
- Abstract summary: We propose a novel transformation of dynamic normalizing flows, based on time deformation of a Brownian motion.
This approach enables us to effectively model some SDEs, that cannot be modeled otherwise.
- Score: 5.402030962296633
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The generative paradigm has become increasingly important in machine learning
and deep learning models. Among popular generative models are normalizing
flows, which enable exact likelihood estimation by transforming a base
distribution through diffeomorphic transformations. Extending the normalizing
flow framework to handle time-indexed flows gave dynamic normalizing flows, a
powerful tool to model time series, stochastic processes, and neural stochastic
differential equations (SDEs). In this work, we propose a novel variant of
dynamic normalizing flows, a Time Changed Normalizing Flow (TCNF), based on
time deformation of a Brownian motion which constitutes a versatile and
extensive family of Gaussian processes. This approach enables us to effectively
model some SDEs, that cannot be modeled otherwise, including standard ones such
as the well-known Ornstein-Uhlenbeck process, and generalizes prior
methodologies, leading to improved results and better inference and prediction
capability.
Related papers
- Trajectory Flow Matching with Applications to Clinical Time Series Modeling [77.58277281319253]
Trajectory Flow Matching (TFM) trains a Neural SDE in a simulation-free manner, bypassing backpropagation through the dynamics.
We demonstrate improved performance on three clinical time series datasets in terms of absolute performance and uncertainty prediction.
arXiv Detail & Related papers (2024-10-28T15:54:50Z) - Model-Free Stochastic Process Modeling and Optimization using Normalizing Flows [0.0]
This work proposes using conditional normalizing flows as discrete-time models to learn the dynamics of chemical processes.
The normalizing flow yields stable simulations over long time horizons and high-quality results in probabilistic and MPC formulation for open-loop control.
arXiv Detail & Related papers (2024-09-26T08:28:14Z) - Latent Space Energy-based Neural ODEs [73.01344439786524]
This paper introduces a novel family of deep dynamical models designed to represent continuous-time sequence data.
We train the model using maximum likelihood estimation with Markov chain Monte Carlo.
Experiments on oscillating systems, videos and real-world state sequences (MuJoCo) illustrate that ODEs with the learnable energy-based prior outperform existing counterparts.
arXiv Detail & Related papers (2024-09-05T18:14:22Z) - Unfolding Time: Generative Modeling for Turbulent Flows in 4D [49.843505326598596]
This work introduces a 4D generative diffusion model and a physics-informed guidance technique that enables the generation of realistic sequences of flow states.
Our findings indicate that the proposed method can successfully sample entire subsequences from the turbulent manifold.
This advancement opens doors for the application of generative modeling in analyzing the temporal evolution of turbulent flows.
arXiv Detail & Related papers (2024-06-17T10:21:01Z) - Data-driven Modeling and Inference for Bayesian Gaussian Process ODEs
via Double Normalizing Flows [28.62579476863723]
We introduce normalizing flows to re parameterize the ODE vector field, resulting in a data-driven prior distribution.
We also apply normalizing flows to the posterior inference of GP ODEs to resolve the issue of strong mean-field assumptions.
We validate the effectiveness of our approach on simulated dynamical systems and real-world human motion data.
arXiv Detail & Related papers (2023-09-17T09:28:47Z) - Flow-based Spatio-Temporal Structured Prediction of Motion Dynamics [21.24885597341643]
Conditional Flows (CNFs) are flexible generative models capable of representing complicated distributions with high dimensionality and interdimensional correlations.
We propose MotionFlow as a novel approach that autoregressively normalizes the output on the temporal input features.
We apply our method to different tasks, including prediction, motion prediction time series forecasting, and binary segmentation.
arXiv Detail & Related papers (2021-04-09T14:30:35Z) - Dynamic Gaussian Mixture based Deep Generative Model For Robust
Forecasting on Sparse Multivariate Time Series [43.86737761236125]
We propose a novel generative model, which tracks the transition of latent clusters, instead of isolated feature representations.
It is characterized by a newly designed dynamic Gaussian mixture distribution, which captures the dynamics of clustering structures.
A structured inference network is also designed for enabling inductive analysis.
arXiv Detail & Related papers (2021-03-03T04:10:07Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - STEER: Simple Temporal Regularization For Neural ODEs [80.80350769936383]
We propose a new regularization technique: randomly sampling the end time of the ODE during training.
The proposed regularization is simple to implement, has negligible overhead and is effective across a wide variety of tasks.
We show through experiments on normalizing flows, time series models and image recognition that the proposed regularization can significantly decrease training time and even improve performance over baseline models.
arXiv Detail & Related papers (2020-06-18T17:44:50Z) - Liquid Time-constant Networks [117.57116214802504]
We introduce a new class of time-continuous recurrent neural network models.
Instead of declaring a learning system's dynamics by implicit nonlinearities, we construct networks of linear first-order dynamical systems.
These neural networks exhibit stable and bounded behavior, yield superior expressivity within the family of neural ordinary differential equations.
arXiv Detail & Related papers (2020-06-08T09:53:35Z) - Modeling Continuous Stochastic Processes with Dynamic Normalizing Flows [40.9137348900942]
We propose a novel type of flow driven by a differential deformation of the Wiener process.
As a result, we obtain a rich time series model whose observable process inherits many of the appealing properties of its base process.
arXiv Detail & Related papers (2020-02-24T20:13:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.