論文の概要: Enriching Automatic Test Case Generation by Extracting Relevant Test Inputs from Bug Reports
- arxiv url: http://arxiv.org/abs/2312.14898v2
- Date: Wed, 19 Mar 2025 20:06:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-21 15:30:51.644351
- Title: Enriching Automatic Test Case Generation by Extracting Relevant Test Inputs from Bug Reports
- Title(参考訳): バグレポートから関連するテスト入力を抽出した自動テストケース生成
- Authors: Wendkûuni C. Ouédraogo, Laura Plein, Kader Kaboré, Andrew Habib, Jacques Klein, David Lo, Tegawendé F. Bissyandé,
- Abstract要約: BRMinerは,バグレポートから関連するインプットを抽出する従来の手法と組み合わせて,LLM(Large Language Models)を利用した新しいアプローチである。
本研究では,Defects4JベンチマークとEvoSuiteやRandoopといったテスト生成ツールを用いたBRMinerの評価を行った。
その結果、BRMinerは60.03%の関連入力レート(RIR)と31.71%の関連入力抽出精度(RIEAR)を達成した。
- 参考スコア(独自算出の注目度): 10.587260348588064
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The quality of software is closely tied to the effectiveness of the tests it undergoes. Manual test writing, though crucial for bug detection, is time-consuming, which has driven significant research into automated test case generation. However, current methods often struggle to generate relevant inputs, limiting the effectiveness of the tests produced. To address this, we introduce BRMiner, a novel approach that leverages Large Language Models (LLMs) in combination with traditional techniques to extract relevant inputs from bug reports, thereby enhancing automated test generation tools. In this study, we evaluate BRMiner using the Defects4J benchmark and test generation tools such as EvoSuite and Randoop. Our results demonstrate that BRMiner achieves a Relevant Input Rate (RIR) of 60.03% and a Relevant Input Extraction Accuracy Rate (RIEAR) of 31.71%, significantly outperforming methods that rely on LLMs alone. The integration of BRMiner's input enhances EvoSuite ability to generate more effective test, leading to increased code coverage, with gains observed in branch, instruction, method, and line coverage across multiple projects. Furthermore, BRMiner facilitated the detection of 58 unique bugs, including those that were missed by traditional baseline approaches. Overall, BRMiner's combination of LLM filtering with traditional input extraction techniques significantly improves the relevance and effectiveness of automated test generation, advancing the detection of bugs and enhancing code coverage, thereby contributing to higher-quality software development.
- Abstract(参考訳): ソフトウェアの品質は、実行中のテストの有効性と密接に結びついています。
手動テストの記述はバグ検出に不可欠だが、時間を要するため、自動テストケース生成に関する大きな研究が進められている。
しかし、現在の手法は、しばしば関連するインプットを生成するのに苦労し、生成されたテストの有効性を制限します。
BRMinerは,バグレポートから関連するインプットを抽出し,自動テスト生成ツールの強化を目的として,LLM(Large Language Models)と組み合わせた新しいアプローチである。
本研究では,Defects4JベンチマークとEvoSuiteやRandoopといったテスト生成ツールを用いたBRMinerの評価を行った。
その結果,BRMiner は 60.03% の関連入力率 (RIR) と 31.71% の関連入力抽出精度 (RIEAR) を達成できた。
BRMinerのインプットの統合により、EvoSuiteがより効果的なテストを生成する能力が向上し、コードカバレッジが向上し、ブランチ、インストラクション、メソッド、複数プロジェクトにわたるラインカバレッジが向上した。
さらにBRMinerは、従来のベースラインアプローチで見逃されたバグを含む58のユニークなバグの検出を容易にした。
BRMinerのLLMフィルタリングと従来の入力抽出技術の組み合わせにより、自動テスト生成の妥当性と効率が大幅に向上し、バグの検出が進み、コードカバレッジが向上し、高品質なソフトウェア開発に寄与する。
関連論文リスト
- From Requirements to Test Cases: An NLP-Based Approach for High-Performance ECU Test Case Automation [0.5249805590164901]
本研究では,自然言語処理技術を用いて,自然言語要求を構造化されたテストケース仕様に変換する手法について検討する。
400個の特徴要素文書のデータセットを用いて、信号名や値などの重要な要素を抽出するための両方のアプローチを評価した。
Rule-Based 法は NER 法よりも優れており、95% の精度で単一信号でより単純な要求を満たすことができる。
論文 参考訳(メタデータ) (2025-05-01T14:23:55Z) - AutoLogi: Automated Generation of Logic Puzzles for Evaluating Reasoning Abilities of Large Language Models [86.83875864328984]
本稿では,オープンエンド論理パズルを自動合成する手法を提案し,それをバイリンガルベンチマークであるAutoLogiの開発に利用する。
提案手法は,プログラムベースの検証と制御可能な難易度を特徴とし,モデルの推論能力をよりよく区別する信頼性の高い評価を可能にする。
論文 参考訳(メタデータ) (2025-02-24T07:02:31Z) - Improving Deep Assertion Generation via Fine-Tuning Retrieval-Augmented Pre-trained Language Models [20.71745514142851]
RetriGenは検索強化されたディープアサーション生成アプローチである。
我々はRetriGenを6つの最先端アプローチに対して評価する実験を行っている。
論文 参考訳(メタデータ) (2025-02-22T04:17:04Z) - Learning to Solve and Verify: A Self-Play Framework for Code and Test Generation [69.62857948698436]
大規模言語モデル(LLM)の最近の進歩は、コーディングベンチマークのパフォーマンスを改善している。
しかし、手軽に利用できる高品質なデータの枯渇により、改善は停滞している。
本稿では,単一モデルのコードとテスト生成能力を共同で改善するセルフプレイ・ソルバ検証フレームワークであるSol-Verを提案する。
論文 参考訳(メタデータ) (2025-02-20T18:32:19Z) - Boundary Value Test Input Generation Using Prompt Engineering with LLMs: Fault Detection and Coverage Analysis [3.249891166806818]
本稿では,大規模言語モデル(LLM)のホワイトボックスソフトウェアテストにおける境界値テストインプット生成における有効性を評価するためのフレームワークを提案する。
本稿では, 境界値生成におけるLLMの強度と限界, 特に共通境界関連問題の検出について述べる。
本研究は, 境界値テストにおけるLCMの役割について考察し, 自動テスト手法の改善のための可能性と領域の両方について考察する。
論文 参考訳(メタデータ) (2025-01-24T12:54:19Z) - CorrectBench: Automatic Testbench Generation with Functional Self-Correction using LLMs for HDL Design [6.414167153186868]
機能的自己検証と自己補正を備えた自動テストベンチ生成フレームワークであるCorrectBenchを提案する。
提案手法は, 88.85%の成功率で生成したテストベンチの正当性を検証できる。
作業性能は, 従来よりも62.18%高く, 直接手法のパス比の約5倍である。
論文 参考訳(メタデータ) (2024-11-13T10:45:19Z) - Exploring and Lifting the Robustness of LLM-powered Automated Program Repair with Metamorphic Testing [31.327835928133535]
大規模言語モデルを用いた自動プログラム修復(LAPR)技術は、最先端のバグ修正性能を達成した。
実際に展開する前に、LAPR技術で堅牢性テストを実施することが不可欠である。
LAPR技術専用のメタモルフィックテスティングフレームワークであるMT-LAPRを提案する。
論文 参考訳(メタデータ) (2024-10-10T01:14:58Z) - Leveraging Large Language Models for Enhancing the Understandability of Generated Unit Tests [4.574205608859157]
我々は,検索ベースのソフトウェアテストと大規模言語モデルを組み合わせたUTGenを導入し,自動生成テストケースの理解性を向上する。
UTGenテストケースで課題に取り組む参加者は、最大33%のバグを修正し、ベースラインテストケースと比較して最大20%の時間を使用できます。
論文 参考訳(メタデータ) (2024-08-21T15:35:34Z) - Improving LLM-based Unit test generation via Template-based Repair [8.22619177301814]
単体テストは個々のプログラムユニットのバグを検出するのに不可欠だが、時間と労力を消費する。
大規模言語モデル(LLM)は、顕著な推論と生成能力を示している。
本稿では,新しい単体テスト生成法であるTestARTを提案する。
論文 参考訳(メタデータ) (2024-08-06T10:52:41Z) - Leveraging Large Language Models for Efficient Failure Analysis in Game Development [47.618236610219554]
本稿では,テストの失敗の原因となるコードの変更を自動的に識別する手法を提案する。
このメソッドは、LLM(Large Language Models)を利用して、エラーメッセージと対応するコード変更を関連付ける。
当社のアプローチは新たに作成したデータセットで71%の精度に達しています。
論文 参考訳(メタデータ) (2024-06-11T09:21:50Z) - LLM-Powered Test Case Generation for Detecting Tricky Bugs [30.82169191775785]
AIDは、少なくとも正しいプログラムをターゲットにしたテスト入力とオラクルを生成する。
TrickyBugs と EvalPlus の2つの大規模データセットに対する AID の評価を行った。
その結果,AIDのリコール,精度,F1スコアは,それぞれ1.80x,2.65x,1.66xに優れていた。
論文 参考訳(メタデータ) (2024-04-16T06:20:06Z) - GPT-HateCheck: Can LLMs Write Better Functional Tests for Hate Speech Detection? [50.53312866647302]
HateCheckは、合成データに対してきめ細かいモデル機能をテストするスイートである。
GPT-HateCheckは,スクラッチからより多彩で現実的な機能テストを生成するフレームワークである。
クラウドソースのアノテーションは、生成されたテストケースが高品質であることを示しています。
論文 参考訳(メタデータ) (2024-02-23T10:02:01Z) - Observation-based unit test generation at Meta [52.4716552057909]
TestGenは、アプリケーション実行中に観察された複雑なオブジェクトのシリアライズされた観察から作られたユニットテストを自動的に生成する。
TestGenは518のテストを本番環境に投入し、継続的統合で9,617,349回実行され、5,702の障害が見つかった。
評価の結果,信頼性の高い4,361のエンドツーエンドテストから,少なくとも86%のクラスでテストを生成することができた。
論文 参考訳(メタデータ) (2024-02-09T00:34:39Z) - Automatic Generation of Test Cases based on Bug Reports: a Feasibility
Study with Large Language Models [4.318319522015101]
既存のアプローチは、単純なテスト(例えば単体テスト)や正確な仕様を必要とするテストケースを生成する。
ほとんどのテスト手順は、テストスイートを形成するために人間が書いたテストケースに依存しています。
大規模言語モデル(LLM)を活用し,バグレポートを入力として利用することにより,この生成の実現可能性を検討する。
論文 参考訳(メタデータ) (2023-10-10T05:30:12Z) - Effective Test Generation Using Pre-trained Large Language Models and
Mutation Testing [13.743062498008555]
大規模言語モデル(LLM)が生成するテストケースの有効性を,バグの発見の観点から改善するための MuTAP を導入する。
MuTAPは、プログラム・アンダー・テスト(PUT)の自然言語記述がない場合に有効なテストケースを生成することができる
提案手法は, 最大28%の人書きコードスニペットを検出できることを示す。
論文 参考訳(メタデータ) (2023-08-31T08:48:31Z) - Towards Automatic Generation of Amplified Regression Test Oracles [44.45138073080198]
回帰テストオラクルを増幅するためのテストオラクル導出手法を提案する。
このアプローチはテスト実行中にオブジェクトの状態を監視し、以前のバージョンと比較して、SUTの意図した振る舞いに関連する変更を検出する。
論文 参考訳(メタデータ) (2023-07-28T12:38:44Z) - MAPS: A Noise-Robust Progressive Learning Approach for Source-Free
Domain Adaptive Keypoint Detection [76.97324120775475]
クロスドメインキーポイント検出方法は、常に適応中にソースデータにアクセスする必要がある。
本稿では、ターゲット領域に十分に訓練されたソースモデルのみを提供する、ソースフリーなドメイン適応キーポイント検出について考察する。
論文 参考訳(メタデータ) (2023-02-09T12:06:08Z) - Annotation Error Detection: Analyzing the Past and Present for a More
Coherent Future [63.99570204416711]
我々は、潜在的なアノテーションの誤りを検知するための18の手法を再実装し、9つの英語データセット上で評価する。
アノテーションエラー検出タスクの新しい形式化を含む一様評価設定を定義する。
私たちはデータセットと実装を,使いやすく,オープンソースのソフトウェアパッケージとしてリリースしています。
論文 参考訳(メタデータ) (2022-06-05T22:31:45Z) - SUPERNOVA: Automating Test Selection and Defect Prevention in AAA Video
Games Using Risk Based Testing and Machine Learning [62.997667081978825]
従来の手法では、成長するソフトウェアシステムではスケールできないため、ビデオゲームのテストはますます難しいタスクになります。
自動化ハブとして機能しながら,テスト選択と欠陥防止を行うシステム SUPERNOVA を提案する。
この直接的な影響は、未公表のスポーツゲームタイトルの55%以上のテスト時間を減らすことが観察されている。
論文 参考訳(メタデータ) (2022-03-10T00:47:46Z) - Anomaly Detection Based on Selection and Weighting in Latent Space [73.01328671569759]
SWADと呼ばれる新しい選択および重み付けに基づく異常検出フレームワークを提案する。
ベンチマークと実世界のデータセットによる実験は、SWADの有効性と優位性を示している。
論文 参考訳(メタデータ) (2021-03-08T10:56:38Z) - Improving a State-of-the-Art Heuristic for the Minimum Latency Problem
with Data Mining [69.00394670035747]
ハイブリッドメタヒューリスティックスは、オペレーション研究のトレンドとなっている。
成功例は、Greedy Randomized Adaptive Search Procedures (GRASP)とデータマイニング技術を組み合わせたものだ。
論文 参考訳(メタデータ) (2019-08-28T13:12:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。