論文の概要: Dynamic Syntax Mapping: A New Approach to Unsupervised Syntax Parsing
- arxiv url: http://arxiv.org/abs/2312.14966v1
- Date: Mon, 18 Dec 2023 10:34:29 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-31 03:13:00.509860
- Title: Dynamic Syntax Mapping: A New Approach to Unsupervised Syntax Parsing
- Title(参考訳): 動的構文マッピング:教師なし構文解析への新しいアプローチ
- Authors: Buvarp Gohsh, Woods Ali, Anders Michael
- Abstract要約: 本研究では,言語モデル,特に注意分布が構文依存をカプセル化できるという前提について検討する。
本稿ではこれらの構造を誘導するための革新的なアプローチである動的構文マッピング(DSM)を紹介する。
本研究により, 自然言語データの解析精度が向上することが明らかとなった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The intricate hierarchical structure of syntax is fundamental to the
intricate and systematic nature of human language. This study investigates the
premise that language models, specifically their attention distributions, can
encapsulate syntactic dependencies. We introduce Dynamic Syntax Mapping (DSM),
an innovative approach for the agnostic induction of these structures. Our
method diverges from traditional syntax models which rely on predefined
annotation schemata. Instead, we focus on a core characteristic inherent in
dependency relations: syntactic substitutability. This concept refers to the
interchangeability of words within the same syntactic category at either end of
a dependency. By leveraging this property, we generate a collection of
syntactically invariant sentences, which serve as the foundation for our
parsing framework. Our findings reveal that the use of an increasing array of
substitutions notably enhances parsing precision on natural language data.
Specifically, in the context of long-distance subject-verb agreement, DSM
exhibits a remarkable advancement over prior methodologies. Furthermore, DSM's
adaptability is demonstrated through its successful application in varied
parsing scenarios, underscoring its broad applicability.
- Abstract(参考訳): 構文の複雑な階層構造は、人間の言語の複雑で体系的な性質の基本である。
本研究では,言語モデル,特に注意分布が構文依存をカプセル化できるという前提について検討する。
動的構文マッピング(dsm)は,これらの構造を無依存に誘導するための革新的な手法である。
本手法は,事前定義されたアノテーションスキーマに依存する従来の構文モデルから分岐する。
代わりに、依存関係に固有のコア特性である構文置換性に焦点を当てる。
この概念は、依存の両端にある同じ構文圏内の単語の交換可能性を指す。
この特性を利用することで、構文的に不変な文の集合を生成し、解析フレームワークの基礎となる。
本研究により, 自然言語データの解析精度が向上することが明らかとなった。
具体的には,長期にわたる主観的合意の文脈において,DSMは従来の方法論よりも顕著に進歩している。
さらに、DSMの適応性は、様々な解析シナリオにおける成功例を通じて示され、幅広い適用性を示している。
関連論文リスト
- A Hybrid Approach To Aspect Based Sentiment Analysis Using Transfer Learning [3.30307212568497]
本稿では,移動学習を用いたアスペクトベース感性分析のためのハイブリッド手法を提案する。
このアプローチは、大きな言語モデル(LLM)と従来の構文的依存関係の両方の長所を利用して、弱い教師付きアノテーションを生成することに焦点を当てている。
論文 参考訳(メタデータ) (2024-03-25T23:02:33Z) - How Well Do Text Embedding Models Understand Syntax? [50.440590035493074]
テキスト埋め込みモデルが幅広い構文的文脈にまたがって一般化する能力は、まだ解明されていない。
その結果,既存のテキスト埋め込みモデルは,これらの構文的理解課題に十分対応していないことが明らかとなった。
多様な構文シナリオにおけるテキスト埋め込みモデルの一般化能力を高めるための戦略を提案する。
論文 参考訳(メタデータ) (2023-11-14T08:51:00Z) - Variational Cross-Graph Reasoning and Adaptive Structured Semantics
Learning for Compositional Temporal Grounding [143.5927158318524]
テンポラルグラウンドティング(Temporal grounding)とは、クエリ文に従って、未編集のビデオから特定のセグメントを特定するタスクである。
新たに構成時間グラウンドタスクを導入し,2つの新しいデータセット分割を構築した。
ビデオや言語に内在する構造的意味論は、構成的一般化を実現する上で重要な要素である、と我々は主張する。
論文 参考訳(メタデータ) (2023-01-22T08:02:23Z) - Semantic Role Labeling Meets Definition Modeling: Using Natural Language
to Describe Predicate-Argument Structures [104.32063681736349]
本稿では,離散ラベルの代わりに自然言語定義を用いて述語-代名詞構造を記述する手法を提案する。
PropBankスタイルおよびFrameNetスタイル、依存性ベースおよびスパンベースSRLに関する実験と分析は、解釈可能な出力を持つフレキシブルモデルが必ずしも性能を犠牲にしないことを示す。
論文 参考訳(メタデータ) (2022-12-02T11:19:16Z) - Syntactic Substitutability as Unsupervised Dependency Syntax [31.488677474152794]
依存関係関係や構文置換可能性の定義において、より一般的な性質を暗黙的にモデル化する。
この性質は、依存関係の両端にある単語が、同じカテゴリの単語で置き換えられるという事実を捉えている。
使用する代替品の数を増やすことで、自然データに対する解析精度が向上することを示す。
論文 参考訳(メタデータ) (2022-11-29T09:01:37Z) - Graph Adaptive Semantic Transfer for Cross-domain Sentiment
Classification [68.06496970320595]
クロスドメイン感情分類(CDSC)は、ソースドメインから学んだ伝達可能なセマンティクスを使用して、ラベルなしのターゲットドメインにおけるレビューの感情を予測することを目的としている。
本稿では、単語列と構文グラフの両方からドメイン不変セマンティクスを学習できる適応型構文グラフ埋め込み法であるグラフ適応意味伝達(GAST)モデルを提案する。
論文 参考訳(メタデータ) (2022-05-18T07:47:01Z) - Plurality and Quantification in Graph Representation of Meaning [4.82512586077023]
我々のグラフ言語は、モナディックな2階変数のみを用いた自然言語意味論の本質を網羅している。
単純な構文意味インタフェースで意味グラフを構築するための統一型機構を提案する。
現在のグラフ形式は、分配的述語、カテゴリー横断接続、および量化表現のスコープ置換における言語問題に適用される。
論文 参考訳(メタデータ) (2021-12-13T07:04:41Z) - Infusing Finetuning with Semantic Dependencies [62.37697048781823]
シンタックスとは異なり、セマンティクスは今日の事前訓練モデルによって表面化されないことを示す。
次に、畳み込みグラフエンコーダを使用して、タスク固有の微調整にセマンティック解析を明示的に組み込む。
論文 参考訳(メタデータ) (2020-12-10T01:27:24Z) - A Dependency Syntactic Knowledge Augmented Interactive Architecture for
End-to-End Aspect-based Sentiment Analysis [73.74885246830611]
エンドツーエンドABSAのためのマルチタスク学習を用いた対話型アーキテクチャを新たに提案する。
このモデルは、よく設計された依存性関係埋め込みグラフ畳み込みネットワーク(DreGcn)を活用することで、構文知識(依存性関係と型)を完全に活用することができる。
3つのベンチマークデータセットの大規模な実験結果から,本手法の有効性が示された。
論文 参考訳(メタデータ) (2020-04-04T14:59:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。