On fundamental aspects of quantum extreme learning machines
- URL: http://arxiv.org/abs/2312.15124v2
- Date: Fri, 27 Sep 2024 15:08:48 GMT
- Title: On fundamental aspects of quantum extreme learning machines
- Authors: Weijie Xiong, Giorgio Facelli, Mehrad Sahebi, Owen Agnel, Thiparat Chotibut, Supanut Thanasilp, Zoƫ Holmes,
- Abstract summary: Quantum Extreme Learning Machines (QELMs) have emerged as a promising framework for quantum machine learning.
We study the expressivity of QELMs by decomposing the prediction of QELMs into a Fourier series.
- Score: 1.3140209441982318
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum Extreme Learning Machines (QELMs) have emerged as a promising framework for quantum machine learning. Their appeal lies in the rich feature map induced by the dynamics of a quantum substrate - the quantum reservoir - and the efficient post-measurement training via linear regression. Here we study the expressivity of QELMs by decomposing the prediction of QELMs into a Fourier series. We show that the achievable Fourier frequencies are determined by the data encoding scheme, while Fourier coefficients depend on both the reservoir and the measurement. Notably, the expressivity of QELMs is fundamentally limited by the number of Fourier frequencies and the number of observables, while the complexity of the prediction hinges on the reservoir. As a cautionary note on scalability, we identify four sources that can lead to the exponential concentration of the observables as the system size grows (randomness, hardware noise, entanglement, and global measurements) and show how this can turn QELMs into useless input-agnostic oracles. In particular, our result on the reservoir-induced concentration strongly indicates that quantum reservoirs drawn from a highly random ensemble make QELM models unscalable. Our analysis elucidates the potential and fundamental limitations of QELMs, and lays the groundwork for systematically exploring quantum reservoir systems for other machine learning tasks.
Related papers
- Kicking Quantum Fisher Information out of Equilibrium [0.0]
Quantum Fisher Information is a ubiquitous quantity with applications ranging from quantum metrology to condensed matter physics.
We reveal a natural mechanism that amplifies the QFI in a quantum spin chain with a zero-temperature ordered phase.
We revisit the behavior of the quantum Fisher information after a global quench in the thermodynamic limit.
arXiv Detail & Related papers (2025-03-27T18:30:58Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Accurate Numerical Simulations of Open Quantum Systems Using Spectral Tensor Trains [0.0]
Decoherence between qubits is a major bottleneck in quantum computations.
We present a numerical method, Quantum Accelerated Propagator Evaluation (Q-ASPEN)
Q-ASPEN is arbitrarily accurate and can be applied to provide estimates for resources needed to error-correct quantum computations.
arXiv Detail & Related papers (2024-07-16T02:33:27Z) - GQHAN: A Grover-inspired Quantum Hard Attention Network [53.96779043113156]
Grover-inspired Quantum Hard Attention Mechanism (GQHAM) is proposed.
GQHAN adeptly surmounts the non-differentiability hurdle, surpassing the efficacy of extant quantum soft self-attention mechanisms.
The proposal of GQHAN lays the foundation for future quantum computers to process large-scale data, and promotes the development of quantum computer vision.
arXiv Detail & Related papers (2024-01-25T11:11:16Z) - Extracting Many-Body Quantum Resources within One-Body Reduced Density
Matrix Functional Theory [0.0]
Quantum Fisher information (QFI) is a central concept in quantum sciences used to quantify the ultimate precision limit of parameter estimation.
Here we combine ideas from functional theories and quantum information to develop a novel functional framework for the QFI of fermionic and bosonic ground states.
Our results provide the first connection between the one-body reduced density matrix functional theory and the quantum Fisher information.
arXiv Detail & Related papers (2023-11-21T13:33:53Z) - Challenges and Opportunities in Quantum Machine Learning [2.5671549335906367]
Quantum Machine Learning (QML) has the potential of accelerating data analysis, especially for quantum data.
Here we review current methods and applications for QML.
We highlight differences between quantum and classical machine learning, with a focus on quantum neural networks and quantum deep learning.
arXiv Detail & Related papers (2023-03-16T17:10:39Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
We study learnability of quantum circuit Born machines (QCBMs) and quantum generative adversarial networks (QGANs)
We first analyze the generalization ability of QCBMs and identify their superiorities when the quantum devices can directly access the target distribution.
Next, we prove how the generalization error bound of QGANs depends on the employed Ansatz, the number of qudits, and input states.
arXiv Detail & Related papers (2022-05-10T08:05:59Z) - Noisy Quantum Kernel Machines [58.09028887465797]
An emerging class of quantum learning machines is that based on the paradigm of quantum kernels.
We study how dissipation and decoherence affect their performance.
We show that decoherence and dissipation can be seen as an implicit regularization for the quantum kernel machines.
arXiv Detail & Related papers (2022-04-26T09:52:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.