Kicking Quantum Fisher Information out of Equilibrium
- URL: http://arxiv.org/abs/2503.21905v2
- Date: Tue, 29 Apr 2025 16:39:32 GMT
- Title: Kicking Quantum Fisher Information out of Equilibrium
- Authors: Florent Ferro, Maurizio Fagotti,
- Abstract summary: Quantum Fisher Information is a ubiquitous quantity with applications ranging from quantum metrology to condensed matter physics.<n>We reveal a natural mechanism that amplifies the QFI in a quantum spin chain with a zero-temperature ordered phase.<n>We revisit the behavior of the quantum Fisher information after a global quench in the thermodynamic limit.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum Fisher Information (QFI) is a ubiquitous quantity with applications ranging from quantum metrology and resource theories to condensed matter physics. In equilibrium local quantum many-body systems, the QFI of a subsystem with respect to an extensive observable is typically proportional to the subsystem's volume. Specifically, in large subsystems at equilibrium, the QFI per unit volume squared becomes negligible. We reveal a natural mechanism that amplifies the QFI in a quantum spin chain with a zero-temperature ordered phase. At zero or sufficiently low temperatures, a transient localized perturbation enhances the QFI, causing it to scale quadratically with the subsystem's length. Furthermore, this enhancement can be controlled through more general localized kicking protocols. We also revisit the behavior of the quantum Fisher information after a global quench in the thermodynamic limit, focusing on the generation of localized -- confined within compact subsystems -- multipartite entanglement. We show that the density of localized multipartite entanglement approaches zero at late times, but there is an optimal time frame proportional to the length in which subsystems fall into macroscopic quantum states. We test our predictions against numerical data obtained using a novel technique, based on a remarkable identity between quantum Fisher information and Wigner-Yanase-Dyson skew information, that allows one to compute the quantum Fisher information with respect to the order parameter in noninteracting spin chains.
Related papers
- Quantum information scrambling in adiabatically-driven critical systems [49.1574468325115]
Quantum information scrambling refers to the spread of the initially stored information over many degrees of freedom of a quantum many-body system.
Here, we extend the notion of quantum information scrambling to critical quantum many-body systems undergoing an adiabatic evolution.
arXiv Detail & Related papers (2024-08-05T18:00:05Z) - On fundamental aspects of quantum extreme learning machines [1.3140209441982318]
Quantum Extreme Learning Machines (QELMs) have emerged as a promising framework for quantum machine learning.
We study the expressivity of QELMs by decomposing the prediction of QELMs into a Fourier series.
arXiv Detail & Related papers (2023-12-23T00:35:23Z) - Quantum reservoir probing: an inverse paradigm of quantum reservoir computing for exploring quantum many-body physics [0.0]
This study proposes a reciprocal research direction: probing quantum systems themselves through their information processing performance.
Building upon this concept, here we develop quantum reservoir probing (QRP), an inverse extension of the Quantum Reservoir Computing (QRC) paradigm.
Unifying quantum information and quantum matter, the QRP holds great promise as a potent tool for exploring various aspects of quantum many-body physics.
arXiv Detail & Related papers (2023-08-02T01:26:36Z) - Robust estimation of the Quantum Fisher Information on a quantum processor [0.0]
We present the experimental measurement of a series of lower bounds that converge to the quantum Fisher information (QFI)
We estimate the QFI for Greenberg-Horne-Zeilinger states, observing genuine multipartite entanglement.
We investigate the interplay between state optimization and noise induced by increasing the circuit depth.
arXiv Detail & Related papers (2023-07-31T17:49:04Z) - Experimental Investigation of Geometric Quantum Speed Limits in an Open Quantum System [0.0]
We studied geometric quantum speed limits (QSL) of a qubit subject to decoherence in an ensemble of chloroform molecules.
We used two distinguishability measures of quantum states to assess the speed of the qubit evolution.
arXiv Detail & Related papers (2023-07-13T04:55:00Z) - Quantum Fisher Information for Different States and Processes in Quantum
Chaotic Systems [77.34726150561087]
We compute the quantum Fisher information (QFI) for both an energy eigenstate and a thermal density matrix.
We compare our results with earlier results for a local unitary transformation.
arXiv Detail & Related papers (2023-04-04T09:28:19Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Multipartite entanglement in the 1-D spin-$\frac{1}{2}$ Heisenberg
Antiferromagnet [0.0]
Multipartite entanglement refers to the simultaneous entanglement between multiple subsystems of a quantum system.
We show that the finite temperature QFI can generally be expressed in terms of a static structure factor of the system.
We show that multipartite entanglement in the Heisenberg chain diverges non-trivially as $sim log (1/T)3/2$.
arXiv Detail & Related papers (2022-12-10T22:19:27Z) - Quantum Federated Learning with Entanglement Controlled Circuits and
Superposition Coding [44.89303833148191]
We develop a depth-controllable architecture of entangled slimmable quantum neural networks (eSQNNs)
We propose an entangled slimmable QFL (eSQFL) that communicates the superposition-coded parameters of eS-QNNs.
In an image classification task, extensive simulations corroborate the effectiveness of eSQFL.
arXiv Detail & Related papers (2022-12-04T03:18:03Z) - Multipartite Entanglement in Crossing the Quantum Critical Point [6.24959391399729]
We investigate the multipartite entanglement for a slow quantum quench crossing a critical point.
We consider the quantum Ising model and the Lipkin-Meshkov-Glick model, which are local and full-connected quantum systems, respectively.
arXiv Detail & Related papers (2022-02-16T06:58:10Z) - Quantum Fisher information from randomized measurements [0.0]
The quantum Fisher information (QFI) is a fundamental quantity of interest in many areas.
We use measurements of the density matrix to construct lower bounds that converge to the QFI.
We present two examples of applications of the method in quantum systems made of coupled qubits and collective spins.
arXiv Detail & Related papers (2021-05-27T14:16:14Z) - Experimental estimation of the quantum Fisher information from
randomized measurements [9.795131832414855]
The quantum Fisher information (QFI) represents a fundamental concept in quantum physics.
Here, we explore how the QFI can be estimated via randomized measurements.
We experimentally validate this approach using two platforms: a nitrogen-vacancy center spin in diamond and a 4-qubit state provided by a superconducting quantum computer.
arXiv Detail & Related papers (2021-04-01T15:12:31Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z) - In and out of equilibrium quantum metrology with mean-field quantum
criticality [68.8204255655161]
We study the influence that collective transition phenomena have on quantum metrological protocols.
The single spherical quantum spin (SQS) serves as stereotypical toy model that allows analytical insights on a mean-field level.
arXiv Detail & Related papers (2020-01-09T19:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.