Statistical Inference with Limited Memory: A Survey
- URL: http://arxiv.org/abs/2312.15225v2
- Date: Sun, 13 Oct 2024 12:26:39 GMT
- Title: Statistical Inference with Limited Memory: A Survey
- Authors: Tomer Berg, Or Ordentlich, Ofer Shayevitz,
- Abstract summary: We review the state-of-the-art of statistical inference under memory constraints in several canonical problems.
We discuss the main results in this developing field, and by identifying recurrent themes, we extract some fundamental building blocks for algorithmic construction.
- Score: 22.41443027099101
- License:
- Abstract: The problem of statistical inference in its various forms has been the subject of decades-long extensive research. Most of the effort has been focused on characterizing the behavior as a function of the number of available samples, with far less attention given to the effect of memory limitations on performance. Recently, this latter topic has drawn much interest in the engineering and computer science literature. In this survey paper, we attempt to review the state-of-the-art of statistical inference under memory constraints in several canonical problems, including hypothesis testing, parameter estimation, and distribution property testing/estimation. We discuss the main results in this developing field, and by identifying recurrent themes, we extract some fundamental building blocks for algorithmic construction, as well as useful techniques for lower bound derivations.
Related papers
- Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
We present a geometry-constrained probabilistic modeling treatment to resolve the identified issues.
We incorporate a suite of critical geometric properties to impose proper constraints on the layout of constructed embedding space.
A spectral graph-theoretic method is devised to estimate the number of potential novel classes.
arXiv Detail & Related papers (2024-03-02T00:56:05Z) - Assumption violations in causal discovery and the robustness of score matching [38.60630271550033]
This paper extensively benchmarks the empirical performance of recent causal discovery methods on observational i.i.d. data.
We show that score matching-based methods demonstrate surprising performance in the false positive and false negative rate of the inferred graph.
We hope this paper will set a new standard for the evaluation of causal discovery methods.
arXiv Detail & Related papers (2023-10-20T09:56:07Z) - A Survey on Causal Discovery Methods for I.I.D. and Time Series Data [4.57769506869942]
Causal Discovery (CD) algorithms can identify the cause-effect relationships among the variables of a system from related observational data.
We present an extensive discussion on the methods designed to perform causal discovery from both independent and identically distributed (I.I.D.) data and time series data.
arXiv Detail & Related papers (2023-03-27T09:21:41Z) - Provable Reinforcement Learning with a Short-Term Memory [68.00677878812908]
We study a new subclass of POMDPs, whose latent states can be decoded by the most recent history of a short length $m$.
In particular, in the rich-observation setting, we develop new algorithms using a novel "moment matching" approach with a sample complexity that scales exponentially.
Our results show that a short-term memory suffices for reinforcement learning in these environments.
arXiv Detail & Related papers (2022-02-08T16:39:57Z) - Differential privacy and robust statistics in high dimensions [49.50869296871643]
High-dimensional Propose-Test-Release (HPTR) builds upon three crucial components: the exponential mechanism, robust statistics, and the Propose-Test-Release mechanism.
We show that HPTR nearly achieves the optimal sample complexity under several scenarios studied in the literature.
arXiv Detail & Related papers (2021-11-12T06:36:40Z) - Partition Function Estimation: A Quantitative Study [25.782420501870295]
A graphical model's partition function is a central quantity of interest.
Several techniques have been proposed over the years with varying guarantees on the quality of estimates.
Our empirical study draws up a surprising observation: exact techniques are as efficient as the approximate ones.
arXiv Detail & Related papers (2021-05-24T07:25:43Z) - Statistical Query Algorithms and Low-Degree Tests Are Almost Equivalent [29.684442397855197]
We study two of the most popular restricted computational models, the statistical query framework and low-degree corollas, in the context of high-dimensional hypothesis testing.
Under mild conditions on the testing problem, the two classes of algorithms are essentially equivalent in power.
Asries, we obtain new statistical query lower bounds for sparse PCA, tensor PCA and several variants of the planted clique problem.
arXiv Detail & Related papers (2020-09-13T22:55:18Z) - Marginal likelihood computation for model selection and hypothesis
testing: an extensive review [66.37504201165159]
This article provides a comprehensive study of the state-of-the-art of the topic.
We highlight limitations, benefits, connections and differences among the different techniques.
Problems and possible solutions with the use of improper priors are also described.
arXiv Detail & Related papers (2020-05-17T18:31:58Z) - The empirical duality gap of constrained statistical learning [115.23598260228587]
We study the study of constrained statistical learning problems, the unconstrained version of which are at the core of virtually all modern information processing.
We propose to tackle the constrained statistical problem overcoming its infinite dimensionality, unknown distributions, and constraints by leveraging finite dimensional parameterizations, sample averages, and duality theory.
We demonstrate the effectiveness and usefulness of this constrained formulation in a fair learning application.
arXiv Detail & Related papers (2020-02-12T19:12:29Z) - A Survey on Causal Inference [64.45536158710014]
Causal inference is a critical research topic across many domains, such as statistics, computer science, education, public policy and economics.
Various causal effect estimation methods for observational data have sprung up.
arXiv Detail & Related papers (2020-02-05T21:35:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.