論文の概要: Sample selection with noise rate estimation in noise learning of medical image analysis
- arxiv url: http://arxiv.org/abs/2312.15233v2
- Date: Thu, 11 Jul 2024 00:36:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 23:27:37.542073
- Title: Sample selection with noise rate estimation in noise learning of medical image analysis
- Title(参考訳): 医用画像解析におけるノイズ学習におけるノイズレート推定を用いたサンプル選択
- Authors: Maolin Li, Giacomo Tarroni,
- Abstract要約: 本稿では,ノイズの多いデータセットでトレーニングされた場合のニューラルネットワークの性能を向上させる新しいサンプル選択手法を提案する。
本手法では,線形回帰を用いて損失値の分布を解析することにより,データセットの雑音率を推定する。
モデルのノイズ堅牢性をさらに高めるために,スパース正規化を採用している。
- 参考スコア(独自算出の注目度): 3.9934250802854376
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the field of medical image analysis, deep learning models have demonstrated remarkable success in enhancing diagnostic accuracy and efficiency. However, the reliability of these models is heavily dependent on the quality of training data, and the existence of label noise (errors in dataset annotations) of medical image data presents a significant challenge. This paper introduces a new sample selection method that enhances the performance of neural networks when trained on noisy datasets. Our approach features estimating the noise rate of a dataset by analyzing the distribution of loss values using Linear Regression. Samples are then ranked according to their loss values, and potentially noisy samples are excluded from the dataset. Additionally, we employ sparse regularization to further enhance the noise robustness of our model. Our proposed method is evaluated on five benchmark datasets and a real-life noisy medical image dataset. Notably, two of these datasets contain 3D medical images. The results of our experiments show that our method outperforms existing noise-robust learning methods, particularly in scenarios with high noise rates. Key words: noise-robust learning, medical image analysis, noise rate estimation, sample selection, sparse regularization
- Abstract(参考訳): 医用画像解析の分野では、深層学習モデルは診断精度と効率を向上させることに顕著な成功を収めている。
しかし、これらのモデルの信頼性はトレーニングデータの質に大きく依存しており、医用画像データのラベルノイズ(データセットアノテーションのエラー)の存在は重大な課題である。
本稿では,ノイズの多いデータセットでトレーニングされた場合のニューラルネットワークの性能を向上させる新しいサンプル選択手法を提案する。
本手法では,線形回帰を用いて損失値の分布を解析することにより,データセットの雑音率を推定する。
サンプルは損失値に従ってランク付けされ、潜在的にノイズの多いサンプルはデータセットから除外される。
さらに、スパース正規化を用いて、モデルのノイズ堅牢性をさらに向上する。
提案手法は,5つのベンチマークデータセットと実生活におけるノイズの多い医療画像データセットを用いて評価する。
特に、これらのデータセットのうち2つは、3D医療画像を含んでいる。
実験の結果,提案手法は,特に高雑音率のシナリオにおいて,既存のノイズ障害学習法よりも優れていた。
キーワード:ノイズ・ロバスト学習、医用画像解析、ノイズ率推定、サンプル選択、スパース正規化
関連論文リスト
- Learning with Noisy Foundation Models [95.50968225050012]
本論文は、事前学習データセットにおけるノイズの性質を包括的に理解し分析する最初の研究である。
雑音の悪影響を緩和し、一般化を改善するため、特徴空間に適応するチューニング法(NMTune)を提案する。
論文 参考訳(メタデータ) (2024-03-11T16:22:41Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
病理脳病変は脳画像に多彩な外観を示す。
正規データのみを用いた教師なし異常検出手法が提案されている。
空間分解能の最適化と雑音の大きさの最適化により,異なるモデル学習体制の性能が向上することを示す。
論文 参考訳(メタデータ) (2023-01-19T21:39:38Z) - Improving the Robustness of Summarization Models by Detecting and
Removing Input Noise [50.27105057899601]
本研究では,様々な種類の入力ノイズから,様々なデータセットやモデルサイズに対する性能損失を定量化する大規模な実験的検討を行った。
本稿では,モデル推論中の入力中のそのようなノイズを検出し,除去するための軽量な手法を提案する。
論文 参考訳(メタデータ) (2022-12-20T00:33:11Z) - Weak-signal extraction enabled by deep-neural-network denoising of
diffraction data [26.36525764239897]
深層畳み込みニューラルネットワークを用いて、データの復号化を図示する。
ノイズの多いデータでは、電荷の順序から生じる弱信号が可視化され、精度が向上することを示す。
論文 参考訳(メタデータ) (2022-09-19T14:43:01Z) - Robust Medical Image Classification from Noisy Labeled Data with Global
and Local Representation Guided Co-training [73.60883490436956]
本稿では,ロバストな医用画像分類のためのグローバルおよびローカルな表現学習を用いた新しい協調学習パラダイムを提案する。
ノイズラベルフィルタを用いた自己アンサンブルモデルを用いて、クリーンでノイズの多いサンプルを効率的に選択する。
また,ネットワークを暗黙的に正規化してノイズの多いサンプルを利用するための,グローバルかつ局所的な表現学習手法を設計する。
論文 参考訳(メタデータ) (2022-05-10T07:50:08Z) - Hard Sample Aware Noise Robust Learning for Histopathology Image
Classification [4.75542005200538]
病理組織像分類のための新しいハードサンプル認識型ノイズロバスト学習法を提案する。
本研究は, 難燃性難燃性試料と難燃性試料とを識別するため, 簡易・難燃性検出モデルを構築した。
本稿では,雑音抑圧・高強度化(NSHE)方式を提案する。
論文 参考訳(メタデータ) (2021-12-05T11:07:55Z) - Improving Medical Image Classification with Label Noise Using
Dual-uncertainty Estimation [72.0276067144762]
医用画像における2種類のラベルノイズについて論じ,定義する。
医用画像分類作業中にこれら2つのラベルノイズを処理する不確実性推定に基づくフレームワークを提案する。
論文 参考訳(メタデータ) (2021-02-28T14:56:45Z) - Joint self-supervised blind denoising and noise estimation [0.0]
2つのニューラルネットワークが共同でクリーンシグナルを予測し、ノイズ分布を推定する。
本モデルがノイズ分布を効率的に捉える合成ノイズデータを用いた実証実験を行います。
論文 参考訳(メタデータ) (2021-02-16T08:37:47Z) - Adaptive noise imitation for image denoising [58.21456707617451]
本研究では,自然雑音画像からノイズデータを合成できる新しいテキストバッファ適応ノイズ模倣(ADANI)アルゴリズムを開発した。
現実的なノイズを生成するため、ノイズ発生装置はノイズ発生のガイドとなる雑音/クリーン画像を入力として利用する。
ADANIから出力されるノイズデータとそれに対応する基盤構造とを結合すると、デノイングCNNは、完全に教師された方法で訓練される。
論文 参考訳(メタデータ) (2020-11-30T02:49:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。