論文の概要: SSFlowNet: Semi-supervised Scene Flow Estimation On Point Clouds With Pseudo Label
- arxiv url: http://arxiv.org/abs/2312.15271v2
- Date: Tue, 4 Jun 2024 09:59:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 13:37:33.663128
- Title: SSFlowNet: Semi-supervised Scene Flow Estimation On Point Clouds With Pseudo Label
- Title(参考訳): SSFlowNet:擬似ラベル付きポイントクラウド上の半教師付きシーンフロー推定
- Authors: Jingze Chen, Junfeng Yao, Qiqin Lin, Rongzhou Zhou, Lei Li,
- Abstract要約: 本稿では,シーンフロー推定のための半教師付きアプローチであるSSFlowNetを紹介する。
ラベル付きデータとラベルなしデータの混合を利用し、ラベル付けコストとモデルトレーニングの精度のバランスを最適化する。
- 参考スコア(独自算出の注目度): 10.115392939867244
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the domain of supervised scene flow estimation, the process of manual labeling is both time-intensive and financially demanding. This paper introduces SSFlowNet, a semi-supervised approach for scene flow estimation, that utilizes a blend of labeled and unlabeled data, optimizing the balance between the cost of labeling and the precision of model training. SSFlowNet stands out through its innovative use of pseudo-labels, mainly reducing the dependency on extensively labeled datasets while maintaining high model accuracy. The core of our model is its emphasis on the intricate geometric structures of point clouds, both locally and globally, coupled with a novel spatial memory feature. This feature is adept at learning the geometric relationships between points over sequential time frames. By identifying similarities between labeled and unlabeled points, SSFlowNet dynamically constructs a correlation matrix to evaluate scene flow dependencies at individual point level. Furthermore, the integration of a flow consistency module within SSFlowNet enhances its capability to consistently estimate flow, an essential aspect for analyzing dynamic scenes. Empirical results demonstrate that SSFlowNet surpasses existing methods in pseudo-label generation and shows adaptability across varying data volumes. Moreover, our semi-supervised training technique yields promising outcomes even with different smaller ratio labeled data, marking a substantial advancement in the field of scene flow estimation.
- Abstract(参考訳): 教師付きシーンフロー推定の領域では、手動ラベリングのプロセスは時間集約的かつ経済的に要求される。
本稿では,ラベル付きデータとラベルなしデータを組み合わせた半教師付きシーンフロー推定手法であるSSFlowNetを紹介し,ラベル付けコストとモデルトレーニングの精度のバランスを最適化する。
SSFlowNetは、その革新的な擬似ラベルの使用を通じて際立っている。
我々のモデルの中核は、局所的およびグローバル的に点雲の複雑な幾何学構造と、新しい空間記憶機能に重点を置いている。
この特徴は、逐次時間フレーム上の点間の幾何学的関係の学習に有効である。
ラベル付きポイントとラベルなしポイントの類似性を識別することにより、SSFlowNetは動的に相関行列を構築し、個々のポイントレベルでシーンフロー依存性を評価する。
さらに、SSFlowNet内のフロー一貫性モジュールの統合により、フローを継続的に推定する能力が向上する。
実験の結果、SSFlowNetは擬似ラベル生成の既存の手法を超越し、様々なデータボリュームに適応可能であることが示された。
さらに, 半教師付きトレーニング手法では, ラベル付きデータが異なる場合であっても, 期待できる結果が得られ, シーンフロー推定の分野ではかなり進歩していることを示す。
関連論文リスト
- Let-It-Flow: Simultaneous Optimization of 3D Flow and Object Clustering [2.763111962660262]
実大規模原点雲列からの自己監督型3次元シーンフロー推定の問題点について検討する。
重なり合うソフトクラスタと非重なり合う固いクラスタを組み合わせられる新しいクラスタリング手法を提案する。
本手法は,複数の独立移動物体が互いに近接する複雑な動的シーンにおける流れの解消に優れる。
論文 参考訳(メタデータ) (2024-04-12T10:04:03Z) - STARFlow: Spatial Temporal Feature Re-embedding with Attentive Learning for Real-world Scene Flow [5.476991379461233]
両ユークリッド空間における全点対に一致する大域的注意流埋め込みを提案する。
我々は、新しいドメイン適応損失を利用して、合成から実世界への動き推論のギャップを埋める。
提案手法は,実世界のLiDARスキャンデータセットにおいて特に顕著な結果を得て,各種データセットの最先端性能を実現する。
論文 参考訳(メタデータ) (2024-03-11T04:56:10Z) - OptFlow: Fast Optimization-based Scene Flow Estimation without
Supervision [6.173968909465726]
高速な最適化に基づくシーンフロー推定手法であるOpsFlowを提案する。
人気の高い自動運転ベンチマークにおけるシーンフロー推定のための最先端性能を実現する。
論文 参考訳(メタデータ) (2024-01-04T21:47:56Z) - DistractFlow: Improving Optical Flow Estimation via Realistic
Distractions and Pseudo-Labeling [49.46842536813477]
本稿では,光フロー推定モデルのトレーニングのための新しいデータ拡張手法であるDistractFlowを提案する。
2つのフレームのうちの1つを、類似したドメインを描写したイントラクタイメージと組み合わせることで、自然の物体やシーンと相反する視覚的摂動を誘発することができる。
私たちのアプローチでは、追加のアノテーションを必要とせずに、利用可能なトレーニングペアの数を大幅に増やすことができます。
論文 参考訳(メタデータ) (2023-03-24T15:42:54Z) - PointFlowHop: Green and Interpretable Scene Flow Estimation from
Consecutive Point Clouds [49.7285297470392]
本研究では,PointFlowHopと呼ばれる3次元シーンフローの効率的な推定法を提案する。
ポイントフローホップは2つの連続する点雲を取り、第1点雲の各点の3次元フローベクトルを決定する。
シーンフロー推定タスクを,エゴモーション補償,オブジェクトアソシエーション,オブジェクトワイドモーション推定など,一連のサブタスクに分解する。
論文 参考訳(メタデータ) (2023-02-27T23:06:01Z) - SCOOP: Self-Supervised Correspondence and Optimization-Based Scene Flow [25.577386156273256]
シーンフロー推定は、連続した観察からシーンの3次元運動を見つけることを目的として、コンピュータビジョンにおける長年の課題である。
そこで本研究では,少量のデータから学習可能なシーンフロー推定手法であるSCOOPについて紹介する。
論文 参考訳(メタデータ) (2022-11-25T10:52:02Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
長距離依存のモデリングは、コンピュータビジョンにおけるシーン理解タスクに不可欠である。
完全連結グラフはそのようなモデリングには有益であるが、計算オーバーヘッドは禁じられている。
本稿では,計算複雑性を大幅に低減する動的グラフメッセージパッシングネットワークを提案する。
論文 参考訳(メタデータ) (2022-09-20T14:41:37Z) - Data-heterogeneity-aware Mixing for Decentralized Learning [63.83913592085953]
グラフの混合重みとノード間のデータ不均一性の関係に収束の依存性を特徴付ける。
グラフが現在の勾配を混合する能力を定量化する計量法を提案する。
そこで本研究では,パラメータを周期的かつ効率的に最適化する手法を提案する。
論文 参考訳(メタデータ) (2022-04-13T15:54:35Z) - RMS-FlowNet: Efficient and Robust Multi-Scale Scene Flow Estimation for
Large-Scale Point Clouds [13.62166506575236]
RMS-FlowNetは、正確で効率的なシーンフロー推定のための、エンドツーエンドの学習ベースアーキテクチャである。
我々は,本モデルが,微調整を伴わずに,KITTIデータセットの現実のシーンに向けての競争力を示すことを示した。
論文 参考訳(メタデータ) (2022-04-01T11:02:58Z) - SCTN: Sparse Convolution-Transformer Network for Scene Flow Estimation [71.2856098776959]
点雲は非秩序であり、その密度は著しく一様ではないため、点雲の3次元運動の推定は困難である。
本稿では,sparse convolution-transformer network (sctn) という新しいアーキテクチャを提案する。
学習した関係に基づく文脈情報が豊富で,対応点の一致に役立ち,シーンフローの推定に有効であることを示す。
論文 参考訳(メタデータ) (2021-05-10T15:16:14Z) - Assignment Flows for Data Labeling on Graphs: Convergence and Stability [69.68068088508505]
本稿では、連続時間割当フローを積分代入(ラベル)に収束させることを保証する重みパラメータの条件を確立する。
いくつかの反例は、条件違反は、文脈データ分類に関する代入フローの好ましくない振る舞いを伴う可能性があることを示している。
論文 参考訳(メタデータ) (2020-02-26T15:45:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。