論文の概要: Fréchet Wavelet Distance: A Domain-Agnostic Metric for Image Generation
- arxiv url: http://arxiv.org/abs/2312.15289v2
- Date: Mon, 10 Jun 2024 09:45:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 04:18:44.186222
- Title: Fréchet Wavelet Distance: A Domain-Agnostic Metric for Image Generation
- Title(参考訳): Fréchet Wavelet Distance:画像生成のためのドメインに依存しないメトリクス
- Authors: Lokesh Veeramacheneni, Moritz Wolter, Hildegard Kuehne, Juergen Gall,
- Abstract要約: We propose the Fr'echet Wavelet Distance (FWD) as a domain-agnostic metric based on Wavelet Packet Transform ($W_p$)。
FWDは高解像度の画像の広い周波数帯を視認し、空間的側面とテクスチャ的側面の両方を保存する。
提案したFWDは,領域シフトを一般化し,改善することができるという,さまざまなデータセットにわたる多様なジェネレータの広範な評価で結論付けている。
- 参考スコア(独自算出の注目度): 11.995091514262835
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern metrics for generative learning like Fr\'echet Inception Distance (FID) demonstrate impressive performance. However, they suffer from various shortcomings, like a bias towards specific generators and datasets. To address this problem, we propose the Fr\'echet Wavelet Distance (FWD) as a domain-agnostic metric based on Wavelet Packet Transform ($W_p$). FWD provides a sight across a broad spectrum of frequencies in images with a high resolution, along with preserving both spatial and textural aspects. Specifically, we use Wp to project generated and dataset images to packet coefficient space. Further, we compute Fr\'echet distance with the resultant coefficients to evaluate the quality of a generator. This metric is general-purpose and dataset-domain agnostic, as it does not rely on any pre-trained network while being more interpretable because of frequency band transparency. We conclude with an extensive evaluation of a wide variety of generators across various datasets that the proposed FWD is able to generalize and improve robustness to domain shift and various corruptions compared to other metrics.
- Abstract(参考訳): Fr\'echet Inception Distance (FID)のような生成学習のための現代的なメトリクスは、素晴らしいパフォーマンスを示している。
しかし、特定のジェネレータやデータセットに対するバイアスなど、さまざまな欠点に悩まされている。
この問題に対処するために、Fr\'echet Wavelet Distance (FWD) をWavelet Packet Transform(W_p$)に基づくドメインに依存しない計量として提案する。
FWDは高解像度の画像の広い周波数帯を視認し、空間的側面とテクスチャ的側面の両方を保存する。
具体的には、Wpを用いて生成された画像とデータセットをパケット係数空間に投影する。
さらに、Fr'echet距離を結果係数で計算し、ジェネレータの品質を評価する。
このメトリクスは、周波数帯域透過性のために解釈可能でありながら、事前訓練されたネットワークに依存しないため、汎用的でデータセットドメインに依存しない。
提案したFWDは、他の指標と比較して、ドメインシフトやさまざまな汚職に対する堅牢性を一般化し、改善できるという、さまざまなデータセットにわたる多様なジェネレータの広範な評価で結論付けている。
関連論文リスト
- United Domain Cognition Network for Salient Object Detection in Optical Remote Sensing Images [21.76732661032257]
周波数領域と空間領域のグローバルローカル情報を共同で探索する新しい統一ドメイン認知ネットワーク(UDCNet)を提案する。
実験結果から提案したUDCNetが24種類の最先端モデルよりも優れていることが示された。
論文 参考訳(メタデータ) (2024-11-11T04:12:27Z) - Wavelet-based Bi-dimensional Aggregation Network for SAR Image Change Detection [53.842568573251214]
3つのSARデータセットによる実験結果から、我々のWBANetは現代最先端の手法を著しく上回っていることが明らかとなった。
我々のWBANetは、それぞれのデータセットで98.33%、96.65%、96.62%の正確な分類(PCC)を達成している。
論文 参考訳(メタデータ) (2024-07-18T04:36:10Z) - SFFNet: A Wavelet-Based Spatial and Frequency Domain Fusion Network for Remote Sensing Segmentation [9.22384870426709]
本稿ではSFFNet(Spatial and Frequency Domain Fusion Network)フレームワークを提案する。
第1段階は空間的手法を用いて特徴を抽出し、十分な空間的詳細と意味情報を持つ特徴を得る。
第2段階は、これらの特徴を空間領域と周波数領域の両方にマッピングする。
SFFNetはmIoUの点で優れた性能を示し、それぞれ84.80%と87.73%に達した。
論文 参考訳(メタデータ) (2024-05-03T10:47:56Z) - Frequency-Aware Deepfake Detection: Improving Generalizability through
Frequency Space Learning [81.98675881423131]
この研究は、目に見えないディープフェイク画像を効果的に識別できるユニバーサルディープフェイク検出器を開発するという課題に対処する。
既存の周波数ベースのパラダイムは、偽造検出のためにGANパイプラインのアップサンプリング中に導入された周波数レベルのアーティファクトに依存している。
本稿では、周波数領域学習を中心にしたFreqNetと呼ばれる新しい周波数認識手法を導入し、ディープフェイク検出器の一般化性を高めることを目的とする。
論文 参考訳(メタデータ) (2024-03-12T01:28:00Z) - Misalignment-Robust Frequency Distribution Loss for Image Transformation [51.0462138717502]
本稿では,画像強調や超解像といった深層学習に基づく画像変換手法における共通の課題に対処することを目的とする。
本稿では、周波数領域内における分布距離を計算するための、新しいシンプルな周波数分布損失(FDL)を提案する。
本手法は,周波数領域におけるグローバル情報の思慮深い活用により,トレーニング制約として実証的に有効であることが実証された。
論文 参考訳(メタデータ) (2024-02-28T09:27:41Z) - Latent Space is Feature Space: Regularization Term for GANs Training on
Limited Dataset [1.8634083978855898]
LFMと呼ばれるGANの付加的な構造と損失関数を提案し、潜在空間の異なる次元間の特徴の多様性を最大化するよう訓練した。
実験では、このシステムはDCGAN上に構築されており、CelebAデータセットのスクラッチからFrechet Inception Distance(FID)トレーニングを改善することが証明されている。
論文 参考訳(メタデータ) (2022-10-28T16:34:48Z) - Multi-Scale Wavelet Transformer for Face Forgery Detection [43.33712402517951]
顔偽造検出のためのマルチスケールウェーブレットトランスフォーマフレームワークを提案する。
周波数に基づく空間的注意は、空間的特徴抽出器をフォージェリトレースに集中させるよう誘導するように設計されている。
空間的特徴と周波数特徴を融合させるため,モーダリティ間の注意が提案されている。
論文 参考訳(メタデータ) (2022-10-08T03:39:36Z) - Bitwidth Heterogeneous Federated Learning with Progressive Weight
Dequantization [58.31288475660333]
ビット幅の不均一なフェデレート学習(BHFL)を用いた実用的フェデレーション学習シナリオを提案する。
BHFLは、異なるビット幅のモデルパラメータの集約が深刻な性能劣化をもたらすという、新しい課題をもたらす。
本稿では,低ビット幅の重みをより高ビット幅の重みに段階的に再構成し,最終的に完全精度の重みに再構成する,トレーニング可能な重み決定器を中央サーバに備えたProWDフレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-23T12:07:02Z) - PnP-DETR: Towards Efficient Visual Analysis with Transformers [146.55679348493587]
近年、DeTRはトランスフォーマーを用いたソリューションビジョンタスクの先駆者であり、画像特徴マップを直接オブジェクト結果に変換する。
最近の変圧器を用いた画像認識モデルとTTは、一貫した効率向上を示す。
論文 参考訳(メタデータ) (2021-09-15T01:10:30Z) - WaveFill: A Wavelet-based Generation Network for Image Inpainting [57.012173791320855]
WaveFillはウェーブレットベースの塗装ネットワークで、画像を複数の周波数帯域に分解する。
WaveFillは、空間情報を自然に保存する離散ウェーブレット変換(DWT)を用いて画像を分解する。
低周波帯にL1再構成損失を、高周波帯に敵対損失を施し、それによって周波数間紛争を効果的に軽減する。
論文 参考訳(メタデータ) (2021-07-23T04:44:40Z) - Wavelet Networks: Scale-Translation Equivariant Learning From Raw
Time-Series [31.73386289965465]
スケール変換同変写像はウェーブレット変換と強い類似性を持っている。
この類似性に着想を得て、我々のネットワークをウェーブレットネットワークと呼び、ネストした非線形ウェーブレットのような時間周波数変換を行うことを示す。
論文 参考訳(メタデータ) (2020-06-09T13:50:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。