Examining the Robustness of Spiking Neural Networks on Non-ideal
Memristive Crossbars
- URL: http://arxiv.org/abs/2206.09599v1
- Date: Mon, 20 Jun 2022 07:07:41 GMT
- Title: Examining the Robustness of Spiking Neural Networks on Non-ideal
Memristive Crossbars
- Authors: Abhiroop Bhattacharjee, Youngeun Kim, Abhishek Moitra, and
Priyadarshini Panda
- Abstract summary: Spiking Neural Networks (SNNs) have emerged as the low-power alternative to Artificial Neural Networks (ANNs)
We study the effect of crossbar non-idealities and intrinsicity on the performance of SNNs.
- Score: 4.184276171116354
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spiking Neural Networks (SNNs) have recently emerged as the low-power
alternative to Artificial Neural Networks (ANNs) owing to their asynchronous,
sparse, and binary information processing. To improve the energy-efficiency and
throughput, SNNs can be implemented on memristive crossbars where
Multiply-and-Accumulate (MAC) operations are realized in the analog domain
using emerging Non-Volatile-Memory (NVM) devices. Despite the compatibility of
SNNs with memristive crossbars, there is little attention to study on the
effect of intrinsic crossbar non-idealities and stochasticity on the
performance of SNNs. In this paper, we conduct a comprehensive analysis of the
robustness of SNNs on non-ideal crossbars. We examine SNNs trained via learning
algorithms such as, surrogate gradient and ANN-SNN conversion. Our results show
that repetitive crossbar computations across multiple time-steps induce error
accumulation, resulting in a huge performance drop during SNN inference. We
further show that SNNs trained with a smaller number of time-steps achieve
better accuracy when deployed on memristive crossbars.
Related papers
- Towards Low-latency Event-based Visual Recognition with Hybrid Step-wise Distillation Spiking Neural Networks [50.32980443749865]
Spiking neural networks (SNNs) have garnered significant attention for their low power consumption and high biologicalability.
Current SNNs struggle to balance accuracy and latency in neuromorphic datasets.
We propose Step-wise Distillation (HSD) method, tailored for neuromorphic datasets.
arXiv Detail & Related papers (2024-09-19T06:52:34Z) - RSC-SNN: Exploring the Trade-off Between Adversarial Robustness and Accuracy in Spiking Neural Networks via Randomized Smoothing Coding [17.342181435229573]
Spiking Neural Networks (SNNs) have received widespread attention due to their unique neuronal dynamics and low-power nature.
Previous research empirically shows that SNNs with Poisson coding are more robust than Artificial Neural Networks (ANNs) on small-scale datasets.
This work theoretically demonstrates that SNN's inherent adversarial robustness stems from its Poisson coding.
arXiv Detail & Related papers (2024-07-29T15:26:15Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - Can Deep Neural Networks be Converted to Ultra Low-Latency Spiking
Neural Networks? [3.2108350580418166]
Spiking neural networks (SNNs) operate via binary spikes distributed over time.
SOTA training strategies for SNNs involve conversion from a non-spiking deep neural network (DNN)
We propose a new training algorithm that accurately captures these distributions, minimizing the error between the DNN and converted SNN.
arXiv Detail & Related papers (2021-12-22T18:47:45Z) - Sub-bit Neural Networks: Learning to Compress and Accelerate Binary
Neural Networks [72.81092567651395]
Sub-bit Neural Networks (SNNs) are a new type of binary quantization design tailored to compress and accelerate BNNs.
SNNs are trained with a kernel-aware optimization framework, which exploits binary quantization in the fine-grained convolutional kernel space.
Experiments on visual recognition benchmarks and the hardware deployment on FPGA validate the great potentials of SNNs.
arXiv Detail & Related papers (2021-10-18T11:30:29Z) - Beyond Classification: Directly Training Spiking Neural Networks for
Semantic Segmentation [5.800785186389827]
Spiking Neural Networks (SNNs) have emerged as the low-power alternative to Artificial Neural Networks (ANNs)
In this paper, we explore the SNN applications beyond classification and present semantic segmentation networks configured with spiking neurons.
arXiv Detail & Related papers (2021-10-14T21:53:03Z) - Optimal Conversion of Conventional Artificial Neural Networks to Spiking
Neural Networks [0.0]
Spiking neural networks (SNNs) are biology-inspired artificial neural networks (ANNs)
We propose a novel strategic pipeline that transfers the weights to the target SNN by combining threshold balance and soft-reset mechanisms.
Our method is promising to get implanted onto embedded platforms with better support of SNNs with limited energy and memory.
arXiv Detail & Related papers (2021-02-28T12:04:22Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - You Only Spike Once: Improving Energy-Efficient Neuromorphic Inference
to ANN-Level Accuracy [51.861168222799186]
Spiking Neural Networks (SNNs) are a type of neuromorphic, or brain-inspired network.
SNNs are sparse, accessing very few weights, and typically only use addition operations instead of the more power-intensive multiply-and-accumulate operations.
In this work, we aim to overcome the limitations of TTFS-encoded neuromorphic systems.
arXiv Detail & Related papers (2020-06-03T15:55:53Z) - SiamSNN: Siamese Spiking Neural Networks for Energy-Efficient Object
Tracking [20.595208488431766]
SiamSNN is the first deep SNN tracker that achieves short latency and low precision loss on the visual object tracking benchmarks OTB2013, VOT2016, and GOT-10k.
SiamSNN notably achieves low energy consumption and real-time on Neuromorphic chip TrueNorth.
arXiv Detail & Related papers (2020-03-17T08:49:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.