Developers' Perception: Fixed Bugs Often Overlooked as Quality Contributions
- URL: http://arxiv.org/abs/2403.10806v1
- Date: Sat, 16 Mar 2024 04:40:19 GMT
- Title: Developers' Perception: Fixed Bugs Often Overlooked as Quality Contributions
- Authors: Vitaly Alifanov, Kamil Almetov, Ivan Kornienko, Arsen Mutalapov, Yegor Bugayenko,
- Abstract summary: Only a third of programmers perceive the quantity of bugs found and rectified in a repository as indicative of higher quality.
This finding substantiates the notion that programmers often misinterpret the significance of testing and bug reporting.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High-quality software products rely on both well-written source code and timely detection and thorough reporting of bugs. However, some programmers view bug reports as negative assessments of their work, leading them to withhold reporting bugs, thereby detrimentally impacting projects. Through a survey of 102 programmers, we discovered that only a third of them perceive the quantity of bugs found and rectified in a repository as indicative of higher quality. This finding substantiates the notion that programmers often misinterpret the significance of testing and bug reporting.
Related papers
- Understanding Code Understandability Improvements in Code Reviews [79.16476505761582]
We analyzed 2,401 code review comments from Java open-source projects on GitHub.
83.9% of suggestions for improvement were accepted and integrated, with fewer than 1% later reverted.
arXiv Detail & Related papers (2024-10-29T12:21:23Z) - Leveraging Large Language Models for Efficient Failure Analysis in Game Development [47.618236610219554]
This paper proposes a new approach to automatically identify which change in the code caused a test to fail.
The method leverages Large Language Models (LLMs) to associate error messages with the corresponding code changes causing the failure.
Our approach reaches an accuracy of 71% in our newly created dataset, which comprises issues reported by developers at EA over a period of one year.
arXiv Detail & Related papers (2024-06-11T09:21:50Z) - DebugBench: Evaluating Debugging Capability of Large Language Models [80.73121177868357]
DebugBench is a benchmark for Large Language Models (LLMs)
It covers four major bug categories and 18 minor types in C++, Java, and Python.
We evaluate two commercial and four open-source models in a zero-shot scenario.
arXiv Detail & Related papers (2024-01-09T15:46:38Z) - Toward Rapid Bug Resolution for Android Apps [0.4759142872591625]
This paper describes the existing limitations of bug reports and identifies potential strategies for addressing them.
Our vision encompasses a future where the alleviation of these limitations and successful execution of our proposed new research directions can benefit both reporters and developers.
arXiv Detail & Related papers (2023-12-23T18:29:06Z) - PreciseBugCollector: Extensible, Executable and Precise Bug-fix
Collection [8.79879909193717]
We introduce PreciseBugCollector, a precise, multi-language bug collection approach.
It is based on two novel components: a bug tracker to map the repositories with external bug repositories to trace bug type information, and a bug injector to generate project-specific bugs.
To date, PreciseBugCollector comprises 1057818 bugs extracted from 2968 open-source projects.
arXiv Detail & Related papers (2023-09-12T13:47:44Z) - What Happens When We Fuzz? Investigating OSS-Fuzz Bug History [0.9772968596463595]
We analyzed 44,102 reported issues made public by OSS-Fuzz prior to March 12, 2022.
We identified the bug-contributing commits to estimate when the bug containing code was introduced, and measure the timeline from introduction to detection to fix.
arXiv Detail & Related papers (2023-05-19T05:15:36Z) - Generation Probabilities Are Not Enough: Uncertainty Highlighting in AI Code Completions [54.55334589363247]
We study whether conveying information about uncertainty enables programmers to more quickly and accurately produce code.
We find that highlighting tokens with the highest predicted likelihood of being edited leads to faster task completion and more targeted edits.
arXiv Detail & Related papers (2023-02-14T18:43:34Z) - Explaining Software Bugs Leveraging Code Structures in Neural Machine
Translation [5.079750706023254]
Bugsplainer generates natural language explanations for software bugs by learning from a large corpus of bug-fix commits.
Our evaluation using three performance metrics shows that Bugsplainer can generate understandable and good explanations according to Google's standard.
We also conduct a developer study involving 20 participants where the explanations from Bugsplainer were found to be more accurate, more precise, more concise and more useful than the baselines.
arXiv Detail & Related papers (2022-12-08T22:19:45Z) - Using Developer Discussions to Guide Fixing Bugs in Software [51.00904399653609]
We propose using bug report discussions, which are available before the task is performed and are also naturally occurring, avoiding the need for additional information from developers.
We demonstrate that various forms of natural language context derived from such discussions can aid bug-fixing, even leading to improved performance over using commit messages corresponding to the oracle bug-fixing commits.
arXiv Detail & Related papers (2022-11-11T16:37:33Z) - BigIssue: A Realistic Bug Localization Benchmark [89.8240118116093]
BigIssue is a benchmark for realistic bug localization.
We provide a general benchmark with a diversity of real and synthetic Java bugs.
We hope to advance the state of the art in bug localization, in turn improving APR performance and increasing its applicability to the modern development cycle.
arXiv Detail & Related papers (2022-07-21T20:17:53Z) - Advaita: Bug Duplicity Detection System [1.9624064951902522]
Duplicate bugs rate (% of duplicate bugs) are in the range from single digit (1 to 9%) to double digits (40%) based on the product maturity, size of the code and number of engineers working on the project.
Detecting duplicity deals with identifying whether any two bugs convey the same meaning.
This approach considers multiple sets of features viz. basic text statistical features, semantic features and contextual features.
arXiv Detail & Related papers (2020-01-24T04:48:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.