Towards a Microservice-based Middleware for a Multi-hazard Early Warning
System
- URL: http://arxiv.org/abs/2312.15323v1
- Date: Sat, 23 Dec 2023 18:50:58 GMT
- Title: Towards a Microservice-based Middleware for a Multi-hazard Early Warning
System
- Authors: A Akanbi
- Abstract summary: Environmental hazards like water and air pollution, extreme weather, or chemical exposures can affect human health in a number of ways.
The application of modern technologies in the environmental monitoring of these Human-made hazards is critical, because while not immediately health-threatening may turn out detrimental with unwanted negative effects.
This paper proposes microservice-based challenges aiming at increasing data integration, interoperability, high availability, and reusability of adopted systems using a container orchestration framework for a multi-hazard early warning system.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Environmental hazards like water and air pollution, extreme weather, or
chemical exposures can affect human health in a number of ways, and it is a
persistent apprehension in communities surrounded by mining operations. The
application of modern technologies in the environmental monitoring of these
Human-made hazards is critical, because while not immediately
health-threatening may turn out detrimental with unwanted negative effects.
Enabling technologies needed to realise this concept is multifaceted and most
especially involves deploying interconnected Internet of Things (IoT) sensors,
existing legacy systems, enterprise networks, multi layered software
architecture (middleware), and event processing engines, amongst others.
Currently, the integration of several early warning systems has inherent
challenges, mostly due to the heterogeneity of components. This paper proposes
transversal microservice-based middleware aiming at increasing data
integration, interoperability, scalability, high availability, and reusability
of adopted systems using a container orchestration framework for a multi-hazard
early warning system. Devised within the scope of the ICMHEWS project, the
proposed platform aims at improving known challenges.
Related papers
- Humanoid Occupancy: Enabling A Generalized Multimodal Occupancy Perception System on Humanoid Robots [50.0783429451902]
Humanoid robot technology is advancing rapidly, with manufacturers introducing diverse visual perception modules tailored to specific scenarios.<n> occupancy-based representation has become widely recognized as particularly suitable for humanoid robots, as it provides both rich semantic and 3D geometric information essential for comprehensive environmental understanding.<n>We present Humanoid Occupancy, a generalized multimodal occupancy perception system that integrates hardware and software components, data acquisition devices, and a dedicated annotation pipeline.
arXiv Detail & Related papers (2025-07-27T10:47:00Z) - Enabling Security on the Edge: A CHERI Compartmentalized Network Stack [42.78181795494584]
CHERI provides strong security from the hardware level by enabling fine-grained compartmentalization and memory protection.<n>Our case study examines the trade-offs of isolating applications, TCP/IP libraries, and network drivers on a CheriBSD system deployed on the Arm Morello platform.
arXiv Detail & Related papers (2025-07-07T09:37:59Z) - Extending Lifetime of Embedded Systems by WebAssembly-based Functional Extensions Including Drivers [46.538276603099916]
We present Wasm-IO, a framework designed to facilitate peripheral I/O operations within WebAssembly (Wasm) containers.
We detail synchronous I/O and methods for embedding platform-independent peripheral configurations within Wasm binaries.
arXiv Detail & Related papers (2025-03-10T17:22:00Z) - Securing Legacy Communication Networks via Authenticated Cyclic Redundancy Integrity Check [98.34702864029796]
We propose Authenticated Cyclic Redundancy Integrity Check (ACRIC)
ACRIC preserves backward compatibility without requiring additional hardware and is protocol agnostic.
We show that ACRIC offers robust security with minimal transmission overhead ( 1 ms)
arXiv Detail & Related papers (2024-11-21T18:26:05Z) - IoT in the Cloud: Exploring Security Challenges and Mitigations for a Connected World [18.36339203254509]
The Internet of Things (IoT) has seen remarkable advancements in recent years, leading to a paradigm shift in the digital landscape.
IoT devices, inherently connected to the internet, are susceptible to various forms of attacks.
IoT services often handle sensitive user data, which could be exploited by malicious actors or unauthorized service providers.
arXiv Detail & Related papers (2024-02-01T05:55:43Z) - Floor extraction and door detection for visually impaired guidance [78.94595951597344]
Finding obstacle-free paths in unknown environments is a big navigation issue for visually impaired people and autonomous robots.
New devices based on computer vision systems can help impaired people to overcome the difficulties of navigating in unknown environments in safe conditions.
In this work it is proposed a combination of sensors and algorithms that can lead to the building of a navigation system for visually impaired people.
arXiv Detail & Related papers (2024-01-30T14:38:43Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Agent AI: Surveying the Horizons of Multimodal Interaction [83.18367129924997]
"Agent AI" is a class of interactive systems that can perceive visual stimuli, language inputs, and other environmentally-grounded data.
We envision a future where people can easily create any virtual reality or simulated scene and interact with agents embodied within the virtual environment.
arXiv Detail & Related papers (2024-01-07T19:11:18Z) - Robust Collaborative Inference with Vertically Split Data Over Dynamic Device Environments [15.757660512833006]
In safety-critical applications, collaborative inference must be robust to significant network failures caused by environmental disruptions or extreme weather.
We first formalize the problem of robust collaborative inference over a dynamic network of devices that could experience significant network faults.
Then, we develop a minimalistic yet impactful method called Multiple Aggregation with Gossip Rounds and Simulated Faults (MAGS) that synthesizes simulated faults via dropout, replication, and gossiping to significantly improve robustness over baselines.
arXiv Detail & Related papers (2023-12-27T17:00:09Z) - Detecting Unknown Attacks in IoT Environments: An Open Set Classifier
for Enhanced Network Intrusion Detection [5.787704156827843]
In this paper, we introduce a framework aimed at mitigating the open set recognition (OSR) problem in the realm of Network Intrusion Detection Systems (NIDS) tailored for IoT environments.
Our framework capitalizes on image-based representations of packet-level data, extracting spatial and temporal patterns from network traffic.
The empirical results prominently underscore the framework's efficacy, boasting an impressive 88% detection rate for previously unseen attacks.
arXiv Detail & Related papers (2023-09-14T06:41:45Z) - Is there a Trojan! : Literature survey and critical evaluation of the
latest ML based modern intrusion detection systems in IoT environments [0.0]
IoT as a domain has grown so much in the last few years that it rivals that of the mobile network environments in terms of data volumes as well as cybersecurity threats.
The confidentiality and privacy of data within IoT environments have become very important areas of security research within the last few years.
More and more security experts are interested in designing robust IDS systems to protect IoT environments as a supplement to the more traditional security methods.
arXiv Detail & Related papers (2023-06-14T08:48:46Z) - ThreatKG: An AI-Powered System for Automated Open-Source Cyber Threat Intelligence Gathering and Management [65.0114141380651]
ThreatKG is an automated system for OSCTI gathering and management.
It efficiently collects a large number of OSCTI reports from multiple sources.
It uses specialized AI-based techniques to extract high-quality knowledge about various threat entities.
arXiv Detail & Related papers (2022-12-20T16:13:59Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
This paper describes the system design of an AIOps platform which is applicable in heterogeneous, distributed environments.
It is feasible to collect metrics with a high frequency and simultaneously run specific anomaly detection algorithms directly on edge devices.
arXiv Detail & Related papers (2021-02-12T09:33:00Z) - Grand Challenges for Embedded Security Research in a Connected World [6.1916614285252]
The Computing Community Consortium (CCC) held a one-day visioning workshop to explore these issues.
Report synthesizes the results of that workshop and develops a list of strategic goals for research and education over the next 5-10 years.
arXiv Detail & Related papers (2020-05-13T21:01:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.