Room temperature relaxometry of single nitrogen-vacancy centers in
proximity to $\alpha$-RuCl$_3$ nanoflakes
- URL: http://arxiv.org/abs/2312.15541v1
- Date: Sun, 24 Dec 2023 19:14:47 GMT
- Title: Room temperature relaxometry of single nitrogen-vacancy centers in
proximity to $\alpha$-RuCl$_3$ nanoflakes
- Authors: Jitender Kumar, Dan Yudilevich, Ariel Smooha, Inbar Zohar, Arnab K.
Pariari, Rainer St\"ohr, Andrej Denisenko, Markus H\"ucker, Amit Finkler
- Abstract summary: We investigate the spin dynamics of nanometers-thin flakes of $alpha$-RuCl$_3$ at room temperature.
The influence of the room-temperature spin dynamics can be used to gain information on the material itself and the technique to be used on other 2D materials.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Investigating spin and charge noise in strongly correlated electron systems
is a valuable way to analyze their physical properties and unlock new phases of
matter. In this context, nitrogen-vacancy (NV) center-based magnetometry has
been proven to be a versatile sensor for various classes of magnetic materials
in broad temperature and frequency ranges. Here, we use longitudinal relaxation
time $T_1$ of single NV centers to investigate the spin dynamics of
nanometers-thin flakes of $\alpha$-RuCl$_3$ at room temperature. We observe a
significant reduction in the $T_1$ in the presence of $\alpha$-RuCl$_3$ in
proximity to our NVs, which we attribute to paramagnetic spin noise confined in
the 2D hexagonal plane. Furthermore, the $T_1$ time exhibits an almost linear
increase with an applied external magnetic field. We associate this trend with
the alteration of spin and charge noise in $\alpha$-RuCl$_3$ under an external
magnetic field. These findings suggest that the influence of the
room-temperature spin dynamics of $\alpha$-RuCl$_3$ on the longitudinal
relaxation time of the NV center can be used to gain information on the
material itself and the technique to be used on other 2D materials.
Related papers
- Unveiling nonmagnetic phase and many-body entanglement in two-dimensional random quantum magnets Sr$_2$CuTe$_{1-x}$W$_x$O$_6$ [2.7204116565403744]
We capture the physics of a series of spin stripe/2$ Heisenberg antiferromagnet compounds on a square lattice.
An intermediate range of $x in [0.08, 0.55]$ is identified for a nonmagnetic phase without the long-range N'eel or stripe order.
Deep inside this phase around $x = 0.3$, we observe signatures potentially linked to randomness-induced short-range spin-liquid-like states.
arXiv Detail & Related papers (2024-07-08T13:22:51Z) - Critical fluctuation and noise spectra in two-dimensional Fe$_{3}$GeTe$_{2}$ magnets [24.442543023868097]
Critical fluctuations play a fundamental role in determining the spin orders for low-dimensional quantum materials.
We employ the quantum decoherence imaging technique utilizing nitrogen-vacancy centers in diamond to explore the critical magnetic fluctuations.
arXiv Detail & Related papers (2024-06-30T10:18:08Z) - Ancilla quantum measurements on interacting chains: Sensitivity of entanglement dynamics to the type and concentration of detectors [46.76612530830571]
We consider a quantum many-body lattice system that is coupled to ancillary degrees of freedom (detectors'')
We explore the dynamics of density and of entanglement entropy in the chain, for various values of $rho_a$ and $M$.
arXiv Detail & Related papers (2023-11-21T21:41:11Z) - Cooperative quantum tunneling of the magnetization in Fe-doped Li$_3$N [0.0]
The spin-reversal in dilute Li$$$(Li$_1-x$Fe$_x$)N with $x 1$ % is dominated by resonant quantum tunneling of spatially well-separated states.
We report on the effect of finite couplings between those states that give rise to cooperative, simultaneous quantum tunneling of two spins.
arXiv Detail & Related papers (2023-10-27T14:59:42Z) - Improved Limits on an Exotic Spin- and Velocity-Dependent Interaction at
the Micrometer Scale with an Ensemble-NV-Diamond Magnetometer [7.684562006253786]
We search for an exotic spin- and velocity-dependent interaction between polarized electron spins and unpolarized nucleons at the micrometer scale.
The result establishes new bounds for the coupling parameter $f_perp$ within the force range from 5 to 400 $rm mu$m.
arXiv Detail & Related papers (2023-08-04T11:21:41Z) - Optical coherence properties of Kramers' rare-earth ions at the
nanoscale for quantum applications [41.30071614056703]
Rare-earth (RE) ion doped nano-materials are promising candidates for a range of quantum technology applications.
Among RE ions, the so-called Kramers' ions possess spin transitions in the GHz range at low magnetic fields.
We measure spectroscopic properties that are of relevance to using these materials in quantum technology applications.
arXiv Detail & Related papers (2023-03-03T16:23:29Z) - Multi-Center Magnon Excitations Open the Entire Brillouin Zone to
Terahertz Magnetometry of Quantum Magnets [42.72559625804617]
The magnon density of states can be accessed over the entire Brillouin zone through three-center magnon excitations.
The results of THz time-domain experiments agree remarkably well with linear spin-wave theory.
arXiv Detail & Related papers (2022-03-08T19:04:24Z) - Multiplexed sensing of magnetic field and temperature in real time using
a nitrogen vacancy spin ensemble in diamond [1.015785232738621]
Nitrogen-Vacancy (NV) spin in diamond is a versatile quantum sensor.
We demonstrate a multiplexed sensing of magnetic field and temperature.
arXiv Detail & Related papers (2021-04-25T17:12:37Z) - Electrically tuned hyperfine spectrum in neutral
Tb(II)(Cp$^{\rm{iPr5}}$)$_2$ single-molecule magnet [64.10537606150362]
Both molecular electronic and nuclear spin levels can be used as qubits.
In solid state systems with dopants, an electric field was shown to effectively change the spacing between the nuclear spin qubit levels.
This hyperfine Stark effect may be useful for applications of molecular nuclear spins for quantum computing.
arXiv Detail & Related papers (2020-07-31T01:48:57Z) - Hyperfine and quadrupole interactions for Dy isotopes in DyPc$_2$
molecules [77.57930329012771]
Nuclear spin levels play an important role in understanding magnetization dynamics and implementation and control of quantum bits in lanthanide-based single-molecule magnets.
We investigate the hyperfine and nuclear quadrupole interactions for $161$Dy and $163$Dy nucleus in anionic DyPc$.
arXiv Detail & Related papers (2020-02-12T18:25:31Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.