Guess What Quantum Computing Can Do for Test Case Optimization
- URL: http://arxiv.org/abs/2312.15547v1
- Date: Sun, 24 Dec 2023 21:25:31 GMT
- Title: Guess What Quantum Computing Can Do for Test Case Optimization
- Authors: Xinyi Wang, Shaukat Ali, Tao Yue, Paolo Arcaini
- Abstract summary: In the near term, quantum approximate optimization algorithms (QAOAs) hold great potential to solve optimization problems.
We present the first effort to formulate a software test case optimization problem as a QAOA problem and solve it on quantum computer simulators.
To solve bigger test optimization problems that require many qubits, which are unavailable these days, we integrate a problem decomposition strategy with the QAOA.
- Score: 43.89456212504871
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the near term, quantum approximate optimization algorithms (QAOAs) hold
great potential to solve combinatorial optimization problems. These are hybrid
algorithms, i.e., a combination of quantum and classical algorithms. Several
proof-of-concept applications of QAOAs for solving combinatorial problems, such
as portfolio optimization, energy optimization in power systems, and job
scheduling, have been demonstrated. However, whether QAOAs can efficiently
solve optimization problems from classical software engineering, such as test
optimization, remains unstudied. To this end, we present the first effort to
formulate a software test case optimization problem as a QAOA problem and solve
it on quantum computer simulators. To solve bigger test optimization problems
that require many qubits, which are unavailable these days, we integrate a
problem decomposition strategy with the QAOA. We performed an empirical
evaluation with five test case optimization problems and four industrial
datasets from ABB, Google, and Orona to compare various configurations of our
approach, assess its decomposition strategy of handling large datasets, and
compare its performance with classical algorithms (i.e., Genetic Algorithm (GA)
and Random Search). Based on the evaluation results, we recommend the best
configuration of our approach for test case optimization problems. Also, we
demonstrate that our strategy can reach the same effectiveness as GA and
outperform GA in two out of five test case optimization problems we conducted.
Related papers
- Provably Faster Algorithms for Bilevel Optimization via Without-Replacement Sampling [96.47086913559289]
gradient-based algorithms are widely used in bilevel optimization.
We introduce a without-replacement sampling based algorithm which achieves a faster convergence rate.
We validate our algorithms over both synthetic and real-world applications.
arXiv Detail & Related papers (2024-11-07T17:05:31Z) - Quantum evolutionary algorithm for TSP combinatorial optimisation problem [0.0]
This paper implements a new way of solving a problem called the traveling salesman problem (TSP) using quantum genetic algorithm (QGA)
We compared how well this new approach works to the traditional method known as a classical genetic algorithm (CGA)
arXiv Detail & Related papers (2024-09-20T08:27:42Z) - A Review on Quantum Approximate Optimization Algorithm and its Variants [47.89542334125886]
The Quantum Approximate Optimization Algorithm (QAOA) is a highly promising variational quantum algorithm that aims to solve intractable optimization problems.
This comprehensive review offers an overview of the current state of QAOA, encompassing its performance analysis in diverse scenarios.
We conduct a comparative study of selected QAOA extensions and variants, while exploring future prospects and directions for the algorithm.
arXiv Detail & Related papers (2023-06-15T15:28:12Z) - Quantum approximate optimization via learning-based adaptive
optimization [5.399532145408153]
Quantum approximate optimization algorithm (QAOA) is designed to solve objective optimization problems.
Our results demonstrate that the algorithm greatly outperforms conventional approximations in terms of speed, accuracy, efficiency and stability.
This work helps to unlock the full power of QAOA and paves the way toward achieving quantum advantage in practical classical tasks.
arXiv Detail & Related papers (2023-03-27T02:14:56Z) - A Comparative Study On Solving Optimization Problems With Exponentially
Fewer Qubits [0.0]
We evaluate and improve an algorithm based on Variational Quantum Eigensolver (VQE)
We highlight the numerical instabilities generated by encoding the problem into the variational ansatz.
We propose a classical optimization procedure to find the ground-state of the ansatz in less iterations with a better objective.
arXiv Detail & Related papers (2022-10-21T08:54:12Z) - Performance comparison of optimization methods on variational quantum
algorithms [2.690135599539986]
Variational quantum algorithms (VQAs) offer a promising path towards using near-term quantum hardware for applications in academic and industrial research.
We study the performance of four commonly used gradient-free optimization methods: SLSQP, COBYLA, CMA-ES, and SPSA.
arXiv Detail & Related papers (2021-11-26T12:13:20Z) - Quantum variational optimization: The role of entanglement and problem
hardness [0.0]
We study the role of entanglement, the structure of the variational quantum circuit, and the structure of the optimization problem.
Our numerical results indicate an advantage in adapting the distribution of entangling gates to the problem's topology.
We find evidence that applying conditional value at risk type cost functions improves the optimization, increasing the probability of overlap with the optimal solutions.
arXiv Detail & Related papers (2021-03-26T14:06:54Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
Bilevel optimization is a tool for many machine learning problems.
We propose a novel stoc-efficientgradient estimator named stoc-BiO.
arXiv Detail & Related papers (2020-10-15T18:09:48Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.