論文の概要: High-Fidelity Diffusion-based Image Editing
- arxiv url: http://arxiv.org/abs/2312.15707v2
- Date: Thu, 28 Dec 2023 08:32:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-29 20:40:30.347507
- Title: High-Fidelity Diffusion-based Image Editing
- Title(参考訳): 高忠実拡散に基づく画像編集
- Authors: Chen Hou, Guoqiang Wei, Zhibo Chen
- Abstract要約: 拡散モデルの編集性能は、デノナイジングステップが増加しても、もはや満足できない傾向にある。
本稿では,マルコフ加群が残差特徴を持つ拡散モデル重みを変調するために組み込まれている革新的なフレームワークを提案する。
本稿では,編集過程における誤り伝播の最小化を目的とした新しい学習パラダイムを提案する。
- 参考スコア(独自算出の注目度): 19.85446433564999
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have attained remarkable success in the domains of image
generation and editing. It is widely recognized that employing larger inversion
and denoising steps in diffusion model leads to improved image reconstruction
quality. However, the editing performance of diffusion models tends to be no
more satisfactory even with increasing denoising steps. The deficiency in
editing could be attributed to the conditional Markovian property of the
editing process, where errors accumulate throughout denoising steps. To tackle
this challenge, we first propose an innovative framework where a rectifier
module is incorporated to modulate diffusion model weights with residual
features, thereby providing compensatory information to bridge the fidelity
gap. Furthermore, we introduce a novel learning paradigm aimed at minimizing
error propagation during the editing process, which trains the editing
procedure in a manner similar to denoising score-matching. Extensive
experiments demonstrate that our proposed framework and training strategy
achieve high-fidelity reconstruction and editing results across various levels
of denoising steps, meanwhile exhibits exceptional performance in terms of both
quantitative metric and qualitative assessments. Moreover, we explore our
model's generalization through several applications like image-to-image
translation and out-of-domain image editing.
- Abstract(参考訳): 拡散モデルは画像生成と編集の分野で顕著な成功を収めている。
拡散モデルにおけるインバージョンとデノナイジングのステップを大きくすることで、画像再構成の品質が向上することが広く認識されている。
しかし,拡散モデルの編集性能は,デノナイジングステップが増加しても満足できない傾向にある。
編集の不足は、編集過程の条件付きマルコフ的性質に起因する可能性がある。
この課題に取り組むため,まず整流器モジュールを組み込んで拡散モデル重みを残差で変調し,忠実度ギャップを橋渡しするための補償情報を提供する革新的な枠組みを提案する。
さらに,編集過程における誤り伝播を最小限に抑えることを目的とした新しい学習パラダイムを提案する。
提案するフレームワークとトレーニング戦略は,様々な段階の認知段階における高忠実度再構築と編集を達成し,定量的評価と定性評価の両面において優れた性能を示した。
さらに,画像から画像への変換や領域外画像編集などの応用を通して,モデルの一般化について検討する。
関連論文リスト
- Stable Flow: Vital Layers for Training-Free Image Editing [74.52248787189302]
拡散モデルはコンテンツ合成と編集の分野に革命をもたらした。
最近のモデルでは、従来のUNetアーキテクチャをDiffusion Transformer (DiT)に置き換えている。
画像形成に欠かせないDiT内の「硝子層」を自動同定する手法を提案する。
次に、実画像編集を可能にするために、フローモデルのための改良された画像反転手法を提案する。
論文 参考訳(メタデータ) (2024-11-21T18:59:51Z) - Schedule Your Edit: A Simple yet Effective Diffusion Noise Schedule for Image Editing [42.45138713525929]
効率的な編集では、ソースイメージを潜在空間に反転させる必要があり、このプロセスはDDIMの反転に固有の予測エラーによってしばしば妨げられる。
特異性を排除し、インバージョン安定性を改善し、画像編集のためのより良いノイズ空間を提供する新しいノイズスケジュールであるロジスティックスケジュールを導入する。
提案手法では追加のトレーニングは必要とせず,既存の編集手法と互換性がある。
論文 参考訳(メタデータ) (2024-10-24T14:07:02Z) - Guide-and-Rescale: Self-Guidance Mechanism for Effective Tuning-Free Real Image Editing [42.73883397041092]
本稿では,誘導機構による拡散サンプリングプロセスの修正に基づく新しい手法を提案する。
本研究では,入力画像の全体構造を保存するための自己誘導手法について検討する。
本稿では,人間の評価と定量的分析を通じて,提案手法が望ましい編集を可能にすることを示す。
論文 参考訳(メタデータ) (2024-09-02T15:21:46Z) - TurboEdit: Text-Based Image Editing Using Few-Step Diffusion Models [53.757752110493215]
テキストベースの一般的な編集フレームワーク – 編集フレンドリーなDDPM-noiseインバージョンアプローチ – に注目します。
高速サンプリング法への適用を解析し、その失敗を視覚的アーティファクトの出現と編集強度の不足という2つのクラスに分類する。
そこで我々は,新しいアーティファクトを導入することなく,効率よく編集の規模を拡大する疑似誘導手法を提案する。
論文 参考訳(メタデータ) (2024-08-01T17:27:28Z) - Zero-Shot Video Editing through Adaptive Sliding Score Distillation [51.57440923362033]
本研究は,オリジナルビデオコンテンツの直接操作を容易にする,ビデオベースのスコア蒸留の新たなパラダイムを提案する。
本稿では,グローバルとローカルの両方の動画ガイダンスを取り入れた適応スライディングスコア蒸留方式を提案する。
論文 参考訳(メタデータ) (2024-06-07T12:33:59Z) - ReNoise: Real Image Inversion Through Iterative Noising [62.96073631599749]
本研究では,操作数を増やすことなく,高い品質と操作率の逆転法を導入し,再現精度を向上する。
我々は,近年の高速化拡散モデルを含む様々なサンプリングアルゴリズムとモデルを用いて,Renoise手法の性能を評価する。
論文 参考訳(メタデータ) (2024-03-21T17:52:08Z) - Diffusion Model-Based Image Editing: A Survey [46.244266782108234]
様々な画像生成や編集作業のための強力なツールとして,拡散モデルが登場している。
本稿では,画像編集のための拡散モデルを用いた既存手法の概要について述べる。
テキスト誘導画像編集アルゴリズムの性能を更に評価するために,系統的なベンチマークであるEditEvalを提案する。
論文 参考訳(メタデータ) (2024-02-27T14:07:09Z) - Reconstruct-and-Generate Diffusion Model for Detail-Preserving Image
Denoising [16.43285056788183]
再構成・生成拡散モデル(Reconstruct-and-Generate Diffusion Model, RnG)と呼ばれる新しい手法を提案する。
提案手法は, 再構成型復調ネットワークを利用して, 基礎となるクリーン信号の大半を復元する。
拡散アルゴリズムを用いて残留する高周波の詳細を生成し、視覚的品質を向上させる。
論文 参考訳(メタデータ) (2023-09-19T16:01:20Z) - Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction [75.91471250967703]
我々は、ステアブル条件拡散と呼ばれる新しいサンプリングフレームワークを導入する。
このフレームワークは、利用可能な測定によって提供される情報のみに基づいて、画像再構成と並行して拡散モデルを適用する。
様々な画像モダリティにまたがるアウト・オブ・ディストリビューション性能の大幅な向上を実現した。
論文 参考訳(メタデータ) (2023-08-28T08:47:06Z) - Stimulating Diffusion Model for Image Denoising via Adaptive Embedding and Ensembling [56.506240377714754]
DMID(Diffusion Model for Image Denoising)と呼ばれる新しい手法を提案する。
我々の戦略は、雑音のある画像を事前訓練された非条件拡散モデルに埋め込む適応的な埋め込み法を含む。
我々のDMID戦略は、歪みベースと知覚ベースの両方で最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-07-08T14:59:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。