論文の概要: A Sequential Detection and Tracking of Very Low SNR Objects
- arxiv url: http://arxiv.org/abs/2312.15823v1
- Date: Mon, 25 Dec 2023 22:31:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-27 16:18:51.470595
- Title: A Sequential Detection and Tracking of Very Low SNR Objects
- Title(参考訳): 極低SNR物体の連続検出と追跡
- Authors: Reza Rezaie
- Abstract要約: 超低信号雑音(SNR)オブジェクトの検出・追跡には,逐次検出・追跡(SDT)手法が提案されている。
1データフレームのしきい値に基づく従来の検出と追跡(CDT)アプローチは,比較のためのベンチマークとして検討されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A sequential detection and tracking (SDT) approach is proposed for detection
and tracking of very low signal-to-noise (SNR) objects. The proposed approach
is compared with two existing particle filter track-before-track (TBD) methods.
It is shown that the former outperforms the latter. A conventional detection
and tracking (CDT) approach, based on one-data-frame thresholding, is
considered as a benchmark for comparison. Simulations demonstrate the
performance.
- Abstract(参考訳): 非常に低信号対雑音(SNR)オブジェクトの検出と追跡のためのシーケンシャル検出と追跡(SDT)手法を提案する。
提案手法は,既存の2つの粒子フィルタトラック (TBD) 法と比較した。
前者が後者より優れていることが示されている。
1データフレームのしきい値に基づく従来の検出と追跡(CDT)アプローチは,比較のためのベンチマークとして検討されている。
シミュレーションはパフォーマンスを示します。
関連論文リスト
- ConsistencyTrack: A Robust Multi-Object Tracker with a Generation Strategy of Consistency Model [20.259334882471574]
マルチオブジェクトトラッキング(MOT)は、コンピュータビジョンにおいて重要な技術であり、ビデオシーケンス内の複数のターゲットを検出し、各ターゲットにフレーム毎にユニークなIDを割り当てるように設計されている。
既存のMOTメソッドは、様々なシナリオでリアルタイムで複数のオブジェクトを正確に追跡する。
本稿では,境界ボックス上の拡散過程として検出と関連を定式化するための新しいConsistencyTrack, Joint Detection and Tracking (JDT) フレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-28T05:53:30Z) - TraceMesh: Scalable and Streaming Sampling for Distributed Traces [51.08892669409318]
TraceMeshは、分散トレースのためのスケーラブルでストリーミングなサンプリングツールである。
以前は見つからなかったトレース機能を、統一的で合理化された方法で扱える。
TraceMeshは、サンプリング精度と効率の両方において、最先端の手法よりも大幅に優れている。
論文 参考訳(メタデータ) (2024-06-11T06:13:58Z) - Dense Optical Tracking: Connecting the Dots [82.79642869586587]
DOTは、ビデオにおけるポイントトラッキングの問題を解決するための、新しくてシンプルで効率的な方法である。
OmniMotionのような高度な"ユニバーサルトラッカー"を上回り、CoTrackerのような最良のポイントトラッキングアルゴリズムと同等か、あるいはそれ以上の精度で、DOTが現在の光フロー技術よりもはるかに正確であることを示す。
論文 参考訳(メタデータ) (2023-12-01T18:59:59Z) - Track Before Detect of Low SNR Objects in a Sequence of Image Frames
Using Particle Filter [0.0]
低信号対雑音比(SNR)オブジェクトの検出と追跡のためのTBD粒子フィルタを用いた多モデルモデルについて検討した。
ノイズや乱れなどの異なるシナリオにおける物体の検出と追跡のために,アプローチの性能を評価する。
論文 参考訳(メタデータ) (2022-12-26T06:19:49Z) - Minkowski Tracker: A Sparse Spatio-Temporal R-CNN for Joint Object
Detection and Tracking [53.64390261936975]
我々はオブジェクトの検出と追跡を共同で解決するスパース時間R-CNNであるMinkowski Trackerを提案する。
領域ベースCNN(R-CNN)に着想を得て,物体検出器R-CNNの第2段階として動きを追跡することを提案する。
大規模実験では,本手法の総合的な性能向上は4つの要因によることがわかった。
論文 参考訳(メタデータ) (2022-08-22T04:47:40Z) - Joint Feature Learning and Relation Modeling for Tracking: A One-Stream
Framework [76.70603443624012]
特徴学習と関係モデリングを統合した新しい一ストリーム追跡(OSTrack)フレームワークを提案する。
このようにして、相互誘導により識別的目標指向特徴を動的に抽出することができる。
OSTrackは、複数のベンチマークで最先端のパフォーマンスを実現しており、特に、ワンショットトラッキングベンチマークのGOT-10kでは印象的な結果を示している。
論文 参考訳(メタデータ) (2022-03-22T18:37:11Z) - DSRRTracker: Dynamic Search Region Refinement for Attention-based
Siamese Multi-Object Tracking [13.104037155691644]
本稿では,ガウスフィルタにインスパイアされた動的探索領域改良モジュールを用いたエンドツーエンドMOT法を提案する。
提案手法は,最先端の性能を妥当な速度で達成することができる。
論文 参考訳(メタデータ) (2022-03-21T04:14:06Z) - On the detection-to-track association for online multi-object tracking [30.883165972525347]
トラックの歴史的外観距離をインクリメンタルなガウス混合モデル(IGMM)でモデル化するハイブリッドトラックアソシエーションアルゴリズムを提案する。
3つのMOTベンチマークによる実験結果から,HTAが目標識別性能を向上し,追跡速度に多少の妥協を施すことが確認された。
論文 参考訳(メタデータ) (2021-07-01T14:44:12Z) - DEFT: Detection Embeddings for Tracking [3.326320568999945]
我々は,DEFT と呼ばれる効率的な関節検出・追跡モデルを提案する。
提案手法は,外見に基づくオブジェクトマッチングネットワークと,下層のオブジェクト検出ネットワークとの協調学習に依存している。
DEFTは2Dオンライントラッキングリーダーボードのトップメソッドに匹敵する精度とスピードを持っている。
論文 参考訳(メタデータ) (2021-02-03T20:00:44Z) - Cascaded Regression Tracking: Towards Online Hard Distractor
Discrimination [202.2562153608092]
本稿では,2段階の逐次回帰トラッカーを提案する。
第1段階では, 容易に同定可能な負の候補を抽出する。
第2段階では、残留するあいまいな硬質試料をダブルチェックするために、離散サンプリングに基づくリッジ回帰を設計する。
論文 参考訳(メタデータ) (2020-06-18T07:48:01Z) - Detection in Crowded Scenes: One Proposal, Multiple Predictions [79.28850977968833]
混み合ったシーンにおける高過度なインスタンスを検出することを目的とした,提案手法によるオブジェクト検出手法を提案する。
このアプローチの鍵は、各提案が以前の提案ベースのフレームワークの1つではなく、関連したインスタンスのセットを予測できるようにすることです。
我々の検出器は、CrowdHumanデータセットの挑戦に対して4.9%のAPゲインを得ることができ、CityPersonsデータセットでは1.0%$textMR-2$の改善がある。
論文 参考訳(メタデータ) (2020-03-20T09:48:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。