Combining SNNs with Filtering for Efficient Neural Decoding in Implantable Brain-Machine Interfaces
- URL: http://arxiv.org/abs/2312.15889v2
- Date: Thu, 22 May 2025 02:52:24 GMT
- Title: Combining SNNs with Filtering for Efficient Neural Decoding in Implantable Brain-Machine Interfaces
- Authors: Biyan Zhou, Pao-Sheng Vincent Sun, Arindam Basu,
- Abstract summary: Spiking Neural Networks (SNN) emerge as a promising solution for resource efficient neural decoding.<n>Long Short Term Memory (LSTM) networks achieve the best accuracy.<n>Results with different filters are shown with Bessel filters providing best performance.
- Score: 0.7904805552920349
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While it is important to make implantable brain-machine interfaces (iBMI) wireless to increase patient comfort and safety, the trend of increased channel count in recent neural probes poses a challenge due to the concomitant increase in the data rate. Extracting information from raw data at the source by using edge computing is a promising solution to this problem, with integrated intention decoders providing the best compression ratio. Recent benchmarking efforts have shown recurrent neural networks to be the best solution. Spiking Neural Networks (SNN) emerge as a promising solution for resource efficient neural decoding while Long Short Term Memory (LSTM) networks achieve the best accuracy. In this work, we show that combining traditional signal processing techniques, namely signal filtering, with SNNs improve their decoding performance significantly for regression tasks, closing the gap with LSTMs, at little added cost. Results with different filters are shown with Bessel filters providing best performance. Two block-bidirectional Bessel filters have been used--one for low latency and another for high accuracy. Adding the high accuracy variant of the Bessel filters to the output of ANN, SNN and variants provided statistically significant benefits with maximum gains of $\approx 5\%$ and $8\%$ in $R^2$ for two SNN topologies (SNN\_Streaming and SNN\_3D). Our work presents state of the art results for this dataset and paves the way for decoder-integrated-implants of the future.
Related papers
- Efficient 3D Recognition with Event-driven Spike Sparse Convolution [15.20476631850388]
Spiking Neural Networks (SNNs) provide an energy-efficient way to extract 3D-temporal features.
We introduce the Spike Voxel Coding (SVC) scheme, which encodes the 3D point clouds into a sparse spike train space.
We propose a Spike Sparse Convolution (SSC) model for efficiently extracting 3D sparse point cloud features.
arXiv Detail & Related papers (2024-12-10T09:55:15Z) - Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
Neuromorphic computing uses spiking neural networks (SNNs) to perform inference tasks.<n> embedding a small payload within each spike exchanged between spiking neurons can enhance inference accuracy without increasing energy consumption.<n> split computing - where an SNN is partitioned across two devices - is a promising solution.<n>This paper presents the first comprehensive study of a neuromorphic wireless split computing architecture that employs multi-level SNNs.
arXiv Detail & Related papers (2024-11-07T14:08:35Z) - Obtaining Optimal Spiking Neural Network in Sequence Learning via CRNN-SNN Conversion [12.893883491781697]
Spiking neural networks (SNNs) are a promising alternative to conventional artificial neural networks (ANNs)
We design two sub-pipelines to support the end-to-end conversion of different structures in neural networks.
We show the effectiveness of our method over short and long timescales compared with the state-of-the-art learning- and conversion-based methods.
arXiv Detail & Related papers (2024-08-18T08:23:51Z) - Unveiling the Power of Sparse Neural Networks for Feature Selection [60.50319755984697]
Sparse Neural Networks (SNNs) have emerged as powerful tools for efficient feature selection.
We show that SNNs trained with dynamic sparse training (DST) algorithms can achieve, on average, more than $50%$ memory and $55%$ FLOPs reduction.
Our findings show that feature selection with SNNs trained with DST algorithms can achieve, on average, more than $50%$ memory and $55%$ FLOPs reduction.
arXiv Detail & Related papers (2024-08-08T16:48:33Z) - RSC-SNN: Exploring the Trade-off Between Adversarial Robustness and Accuracy in Spiking Neural Networks via Randomized Smoothing Coding [17.342181435229573]
Spiking Neural Networks (SNNs) have received widespread attention due to their unique neuronal dynamics and low-power nature.
Previous research empirically shows that SNNs with Poisson coding are more robust than Artificial Neural Networks (ANNs) on small-scale datasets.
This work theoretically demonstrates that SNN's inherent adversarial robustness stems from its Poisson coding.
arXiv Detail & Related papers (2024-07-29T15:26:15Z) - Accurate Mapping of RNNs on Neuromorphic Hardware with Adaptive Spiking Neurons [2.9410174624086025]
We present a $SigmaDelta$-low-pass RNN (lpRNN) for mapping rate-based RNNs to spiking neural networks (SNNs)
An adaptive spiking neuron model encodes signals using $SigmaDelta$-modulation and enables precise mapping.
We demonstrate the implementation of the lpRNN on Intel's neuromorphic research chip Loihi.
arXiv Detail & Related papers (2024-07-18T14:06:07Z) - One-Spike SNN: Single-Spike Phase Coding with Base Manipulation for ANN-to-SNN Conversion Loss Minimization [0.41436032949434404]
As spiking neural networks (SNNs) are event-driven, energy efficiency is higher than conventional artificial neural networks (ANNs)
In this work, we propose a single-spike phase coding as an encoding scheme that minimizes the number of spikes to transfer data between SNN layers.
Without any additional retraining or architectural constraints on ANNs, the proposed conversion method does not lose inference accuracy (0.58% on average) verified on three convolutional neural networks (CNNs) with CIFAR and ImageNet datasets.
arXiv Detail & Related papers (2024-01-30T02:00:28Z) - Memory-Efficient Reversible Spiking Neural Networks [8.05761813203348]
Spiking neural networks (SNNs) are potential competitors to artificial neural networks (ANNs)
SNNs require much more memory than ANNs, which impedes the training of deeper SNN models.
We propose the reversible spiking neural network to reduce the memory cost of intermediate activations and membrane potentials during training.
arXiv Detail & Related papers (2023-12-13T06:39:49Z) - High-performance deep spiking neural networks with 0.3 spikes per neuron [9.01407445068455]
It is hard to train biologically-inspired spiking neural networks (SNNs) than artificial neural networks (ANNs)
We show that training deep SNN models achieves the exact same performance as that of ANNs.
Our SNN accomplishes high-performance classification with less than 0.3 spikes per neuron, lending itself for an energy-efficient implementation.
arXiv Detail & Related papers (2023-06-14T21:01:35Z) - Attention-based Feature Compression for CNN Inference Offloading in Edge
Computing [93.67044879636093]
This paper studies the computational offloading of CNN inference in device-edge co-inference systems.
We propose a novel autoencoder-based CNN architecture (AECNN) for effective feature extraction at end-device.
Experiments show that AECNN can compress the intermediate data by more than 256x with only about 4% accuracy loss.
arXiv Detail & Related papers (2022-11-24T18:10:01Z) - Low Latency Conversion of Artificial Neural Network Models to
Rate-encoded Spiking Neural Networks [11.300257721586432]
Spiking neural networks (SNNs) are well suited for resource-constrained applications.
In a typical rate-encoded SNN, a series of binary spikes within a globally fixed time window is used to fire the neurons.
The aim of this paper is to reduce this while maintaining accuracy when converting ANNs to their equivalent SNNs.
arXiv Detail & Related papers (2022-10-27T08:13:20Z) - SNN2ANN: A Fast and Memory-Efficient Training Framework for Spiking
Neural Networks [117.56823277328803]
Spiking neural networks are efficient computation models for low-power environments.
We propose a SNN-to-ANN (SNN2ANN) framework to train the SNN in a fast and memory-efficient way.
Experiment results show that our SNN2ANN-based models perform well on the benchmark datasets.
arXiv Detail & Related papers (2022-06-19T16:52:56Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - Sub-bit Neural Networks: Learning to Compress and Accelerate Binary
Neural Networks [72.81092567651395]
Sub-bit Neural Networks (SNNs) are a new type of binary quantization design tailored to compress and accelerate BNNs.
SNNs are trained with a kernel-aware optimization framework, which exploits binary quantization in the fine-grained convolutional kernel space.
Experiments on visual recognition benchmarks and the hardware deployment on FPGA validate the great potentials of SNNs.
arXiv Detail & Related papers (2021-10-18T11:30:29Z) - Fully Spiking Variational Autoencoder [66.58310094608002]
Spiking neural networks (SNNs) can be run on neuromorphic devices with ultra-high speed and ultra-low energy consumption.
In this study, we build a variational autoencoder (VAE) with SNN to enable image generation.
arXiv Detail & Related papers (2021-09-26T06:10:14Z) - Training Energy-Efficient Deep Spiking Neural Networks with Single-Spike
Hybrid Input Encoding [5.725845886457027]
Spiking Neural Networks (SNNs) provide higher computational efficiency in event driven neuromorphic hardware.
SNNs suffer from high inference latency, resulting from inefficient input encoding and training techniques.
This paper presents a training framework for low-latency energy-efficient SNNs.
arXiv Detail & Related papers (2021-07-26T06:16:40Z) - SpikeMS: Deep Spiking Neural Network for Motion Segmentation [7.491944503744111]
textitSpikeMS is the first deep encoder-decoder SNN architecture for the real-world large-scale problem of motion segmentation.
We show that textitSpikeMS is capable of textitincremental predictions, or predictions from smaller amounts of test data than it is trained on.
arXiv Detail & Related papers (2021-05-13T21:34:55Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
We propose a time estimation framework to decouple the architectural search from the target hardware.
The proposed methodology extracts a set of models from micro- kernel and multi-layer benchmarks and generates a stacked model for mapping and network execution time estimation.
We compare estimation accuracy and fidelity of the generated mixed models, statistical models with the roofline model, and a refined roofline model for evaluation.
arXiv Detail & Related papers (2021-05-07T11:39:05Z) - Deep Time Delay Neural Network for Speech Enhancement with Full Data
Learning [60.20150317299749]
This paper proposes a deep time delay neural network (TDNN) for speech enhancement with full data learning.
To make full use of the training data, we propose a full data learning method for speech enhancement.
arXiv Detail & Related papers (2020-11-11T06:32:37Z) - DIET-SNN: Direct Input Encoding With Leakage and Threshold Optimization
in Deep Spiking Neural Networks [8.746046482977434]
DIET-SNN is a low-deep spiking network that is trained with gradient descent to optimize the membrane leak and the firing threshold.
We evaluate DIET-SNN on image classification tasks from CIFAR and ImageNet datasets on VGG and ResNet architectures.
We achieve top-1 accuracy of 69% with 5 timesteps (inference latency) on the ImageNet dataset with 12x less compute energy than an equivalent standard ANN.
arXiv Detail & Related papers (2020-08-09T05:07:17Z) - You Only Spike Once: Improving Energy-Efficient Neuromorphic Inference
to ANN-Level Accuracy [51.861168222799186]
Spiking Neural Networks (SNNs) are a type of neuromorphic, or brain-inspired network.
SNNs are sparse, accessing very few weights, and typically only use addition operations instead of the more power-intensive multiply-and-accumulate operations.
In this work, we aim to overcome the limitations of TTFS-encoded neuromorphic systems.
arXiv Detail & Related papers (2020-06-03T15:55:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.