Semi-supervised Active Learning for Instance Segmentation via Scoring
Predictions
- URL: http://arxiv.org/abs/2012.04829v1
- Date: Wed, 9 Dec 2020 02:36:52 GMT
- Title: Semi-supervised Active Learning for Instance Segmentation via Scoring
Predictions
- Authors: Jun Wang, Shaoguo Wen, Kaixing Chen, Jianghua Yu, Xin Zhou, Peng Gao,
Changsheng Li, Guotong Xie
- Abstract summary: We propose a novel and principled semi-supervised active learning framework for instance segmentation.
Specifically, we present an uncertainty sampling strategy named Triplet Scoring Predictions (TSP) to explicitly incorporate samples ranking clues from classes, bounding boxes and masks.
Results on medical images datasets demonstrate that the proposed method results in the embodiment of knowledge from available data in a meaningful way.
- Score: 25.408505612498423
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Active learning generally involves querying the most representative samples
for human labeling, which has been widely studied in many fields such as image
classification and object detection. However, its potential has not been
explored in the more complex instance segmentation task that usually has
relatively higher annotation cost. In this paper, we propose a novel and
principled semi-supervised active learning framework for instance segmentation.
Specifically, we present an uncertainty sampling strategy named Triplet Scoring
Predictions (TSP) to explicitly incorporate samples ranking clues from classes,
bounding boxes and masks. Moreover, we devise a progressive pseudo labeling
regime using the above TSP in semi-supervised manner, it can leverage both the
labeled and unlabeled data to minimize labeling effort while maximize
performance of instance segmentation. Results on medical images datasets
demonstrate that the proposed method results in the embodiment of knowledge
from available data in a meaningful way. The extensive quantitatively and
qualitatively experiments show that, our method can yield the best-performing
model with notable less annotation costs, compared with state-of-the-arts.
Related papers
- Annotation-Efficient Polyp Segmentation via Active Learning [45.59503015577479]
We propose a deep active learning framework for annotation-efficient polyp segmentation.
In practice, we measure the uncertainty of each sample by examining the similarity between features masked by the prediction map of the polyp and the background area.
We show that our proposed method achieved state-of-the-art performance compared to other competitors on both a public dataset and a large-scale in-house dataset.
arXiv Detail & Related papers (2024-03-21T12:25:17Z) - Virtual Category Learning: A Semi-Supervised Learning Method for Dense
Prediction with Extremely Limited Labels [63.16824565919966]
This paper proposes to use confusing samples proactively without label correction.
A Virtual Category (VC) is assigned to each confusing sample in such a way that it can safely contribute to the model optimisation.
Our intriguing findings highlight the usage of VC learning in dense vision tasks.
arXiv Detail & Related papers (2023-12-02T16:23:52Z) - Two-Step Active Learning for Instance Segmentation with Uncertainty and
Diversity Sampling [20.982992381790034]
We propose a post-hoc active learning algorithm that integrates uncertainty-based sampling with diversity-based sampling.
Our proposed algorithm is not only simple and easy to implement, but it also delivers superior performance on various datasets.
arXiv Detail & Related papers (2023-09-28T03:40:30Z) - Temporal Output Discrepancy for Loss Estimation-based Active Learning [65.93767110342502]
We present a novel deep active learning approach that queries the oracle for data annotation when the unlabeled sample is believed to incorporate high loss.
Our approach achieves superior performances than the state-of-the-art active learning methods on image classification and semantic segmentation tasks.
arXiv Detail & Related papers (2022-12-20T19:29:37Z) - Active Pointly-Supervised Instance Segmentation [106.38955769817747]
We present an economic active learning setting, named active pointly-supervised instance segmentation (APIS)
APIS starts with box-level annotations and iteratively samples a point within the box and asks if it falls on the object.
The model developed with these strategies yields consistent performance gain on the challenging MS-COCO dataset.
arXiv Detail & Related papers (2022-07-23T11:25:24Z) - Semi-Supervised Active Learning with Temporal Output Discrepancy [42.01906895756629]
We present a novel deep active learning approach that queries the oracle for data annotation when the unlabeled sample is believed to incorporate high loss.
Our approach achieves superior performances than the state-of-the-art active learning methods on image classification and semantic segmentation tasks.
arXiv Detail & Related papers (2021-07-29T16:25:56Z) - Minimax Active Learning [61.729667575374606]
Active learning aims to develop label-efficient algorithms by querying the most representative samples to be labeled by a human annotator.
Current active learning techniques either rely on model uncertainty to select the most uncertain samples or use clustering or reconstruction to choose the most diverse set of unlabeled examples.
We develop a semi-supervised minimax entropy-based active learning algorithm that leverages both uncertainty and diversity in an adversarial manner.
arXiv Detail & Related papers (2020-12-18T19:03:40Z) - Deep Semi-supervised Knowledge Distillation for Overlapping Cervical
Cell Instance Segmentation [54.49894381464853]
We propose to leverage both labeled and unlabeled data for instance segmentation with improved accuracy by knowledge distillation.
We propose a novel Mask-guided Mean Teacher framework with Perturbation-sensitive Sample Mining.
Experiments show that the proposed method improves the performance significantly compared with the supervised method learned from labeled data only.
arXiv Detail & Related papers (2020-07-21T13:27:09Z) - Towards Cross-Granularity Few-Shot Learning: Coarse-to-Fine
Pseudo-Labeling with Visual-Semantic Meta-Embedding [13.063136901934865]
Few-shot learning aims at rapidly adapting to novel categories with only a handful of samples at test time.
In this paper, we advance the few-shot classification paradigm towards a more challenging scenario, i.e., cross-granularity few-shot classification.
We approximate the fine-grained data distribution by greedy clustering of each coarse-class into pseudo-fine-classes according to the similarity of image embeddings.
arXiv Detail & Related papers (2020-07-11T03:44:21Z) - UniT: Unified Knowledge Transfer for Any-shot Object Detection and
Segmentation [52.487469544343305]
Methods for object detection and segmentation rely on large scale instance-level annotations for training.
We propose an intuitive and unified semi-supervised model that is applicable to a range of supervision.
arXiv Detail & Related papers (2020-06-12T22:45:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.