An extended asymmetric sigmoid with Perceptron (SIGTRON) for imbalanced linear classification
- URL: http://arxiv.org/abs/2312.16043v3
- Date: Tue, 30 Apr 2024 00:11:33 GMT
- Title: An extended asymmetric sigmoid with Perceptron (SIGTRON) for imbalanced linear classification
- Authors: Hyenkyun Woo,
- Abstract summary: This article presents a new parameterized sigmoid called SIGTRON, and its companion convex model called SIGTRON-imbalanced classification (SIC) model.
In contrast to the conventional $pi$-weighted cost-sensitive learning model, the SIC model does not have an external $pi$-weight on the loss function.
We show that the proposed SIC model is more adaptive to variations of the dataset.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This article presents a new polynomial parameterized sigmoid called SIGTRON, which is an extended asymmetric sigmoid with Perceptron, and its companion convex model called SIGTRON-imbalanced classification (SIC) model that employs a virtual SIGTRON-induced convex loss function. In contrast to the conventional $\pi$-weighted cost-sensitive learning model, the SIC model does not have an external $\pi$-weight on the loss function but has internal parameters in the virtual SIGTRON-induced loss function. As a consequence, when the given training dataset is close to the well-balanced condition considering the (scale-)class-imbalance ratio, we show that the proposed SIC model is more adaptive to variations of the dataset, such as the inconsistency of the (scale-)class-imbalance ratio between the training and test datasets. This adaptation is justified by a skewed hyperplane equation, created via linearization of the gradient satisfying $\epsilon$-optimal condition. Additionally, we present a quasi-Newton optimization(L-BFGS) framework for the virtual convex loss by developing an interval-based bisection line search. Empirically, we have observed that the proposed approach outperforms (or is comparable to) $\pi$-weighted convex focal loss and balanced classifier LIBLINEAR(logistic regression, SVM, and L2SVM) in terms of test classification accuracy with $51$ two-class and $67$ multi-class datasets. In binary classification problems, where the scale-class-imbalance ratio of the training dataset is not significant but the inconsistency exists, a group of SIC models with the best test accuracy for each dataset (TOP$1$) outperforms LIBSVM(C-SVC with RBF kernel), a well-known kernel-based classifier.
Related papers
- Highly Adaptive Ridge [84.38107748875144]
We propose a regression method that achieves a $n-2/3$ dimension-free L2 convergence rate in the class of right-continuous functions with square-integrable sectional derivatives.
Har is exactly kernel ridge regression with a specific data-adaptive kernel based on a saturated zero-order tensor-product spline basis expansion.
We demonstrate empirical performance better than state-of-the-art algorithms for small datasets in particular.
arXiv Detail & Related papers (2024-10-03T17:06:06Z) - Latent Semantic Consensus For Deterministic Geometric Model Fitting [109.44565542031384]
We propose an effective method called Latent Semantic Consensus (LSC)
LSC formulates the model fitting problem into two latent semantic spaces based on data points and model hypotheses.
LSC is able to provide consistent and reliable solutions within only a few milliseconds for general multi-structural model fitting.
arXiv Detail & Related papers (2024-03-11T05:35:38Z) - Graph Embedded Intuitionistic Fuzzy Random Vector Functional Link Neural
Network for Class Imbalance Learning [4.069144210024564]
We propose a graph embedded intuitionistic fuzzy RVFL for class imbalance learning (GE-IFRVFL-CIL) model incorporating a weighting mechanism to handle imbalanced datasets.
The proposed GE-IFRVFL-CIL model offers a promising solution to address the class imbalance issue, mitigates the detrimental effect of noise and outliers, and preserves the inherent geometrical structures of the dataset.
arXiv Detail & Related papers (2023-07-15T20:45:45Z) - On the Implicit Geometry of Cross-Entropy Parameterizations for
Label-Imbalanced Data [26.310275682709776]
Various logit-adjusted parameterizations of the cross-entropy (CE) loss have been proposed as alternatives to weighted CE large models on labelimbalanced data.
We show that logit-adjusted parameterizations can be appropriately tuned to learn to learn irrespective of the minority imbalance ratio.
arXiv Detail & Related papers (2023-03-14T03:04:37Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
Differentiable score-based causal discovery methods learn a directed acyclic graph from observational data.
We propose a model-agnostic framework to boost causal discovery performance by dynamically learning the adaptive weights for the Reweighted Score function, ReScore.
arXiv Detail & Related papers (2023-03-06T14:49:59Z) - Soft-SVM Regression For Binary Classification [0.0]
We introduce a new exponential family based on a convex relaxation of the hinge loss function using softness and class-separation parameters.
This new family, denoted Soft-SVM, allows us to prescribe a generalized linear model that effectively bridges between logistic regression and SVM classification.
arXiv Detail & Related papers (2022-05-24T03:01:35Z) - Label Distributionally Robust Losses for Multi-class Classification:
Consistency, Robustness and Adaptivity [55.29408396918968]
We study a family of loss functions named label-distributionally robust (LDR) losses for multi-class classification.
Our contributions include both consistency and robustness by establishing top-$k$ consistency of LDR losses for multi-class classification.
We propose a new adaptive LDR loss that automatically adapts the individualized temperature parameter to the noise degree of class label of each instance.
arXiv Detail & Related papers (2021-12-30T00:27:30Z) - Label-Imbalanced and Group-Sensitive Classification under
Overparameterization [32.923780772605596]
Label-imbalanced and group-sensitive classification seeks to appropriately modify standard training algorithms to optimize relevant metrics.
We show that a logit-adjusted loss modification to standard empirical risk minimization might be ineffective in general.
We show that our results extend naturally to binary classification with sensitive groups, thus treating the two common types of imbalances (label/group) in a unifying way.
arXiv Detail & Related papers (2021-03-02T08:09:43Z) - Provable Model-based Nonlinear Bandit and Reinforcement Learning: Shelve
Optimism, Embrace Virtual Curvature [61.22680308681648]
We show that global convergence is statistically intractable even for one-layer neural net bandit with a deterministic reward.
For both nonlinear bandit and RL, the paper presents a model-based algorithm, Virtual Ascent with Online Model Learner (ViOL)
arXiv Detail & Related papers (2021-02-08T12:41:56Z) - LQF: Linear Quadratic Fine-Tuning [114.3840147070712]
We present the first method for linearizing a pre-trained model that achieves comparable performance to non-linear fine-tuning.
LQF consists of simple modifications to the architecture, loss function and optimization typically used for classification.
arXiv Detail & Related papers (2020-12-21T06:40:20Z) - A Precise High-Dimensional Asymptotic Theory for Boosting and
Minimum-$\ell_1$-Norm Interpolated Classifiers [3.167685495996986]
This paper establishes a precise high-dimensional theory for boosting on separable data.
Under a class of statistical models, we provide an exact analysis of the universality error of boosting.
We also explicitly pin down the relation between the boosting test error and the optimal Bayes error.
arXiv Detail & Related papers (2020-02-05T00:24:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.