Soft-SVM Regression For Binary Classification
- URL: http://arxiv.org/abs/2205.11735v1
- Date: Tue, 24 May 2022 03:01:35 GMT
- Title: Soft-SVM Regression For Binary Classification
- Authors: Man Huang, Luis Carvalho
- Abstract summary: We introduce a new exponential family based on a convex relaxation of the hinge loss function using softness and class-separation parameters.
This new family, denoted Soft-SVM, allows us to prescribe a generalized linear model that effectively bridges between logistic regression and SVM classification.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The binomial deviance and the SVM hinge loss functions are two of the most
widely used loss functions in machine learning. While there are many
similarities between them, they also have their own strengths when dealing with
different types of data. In this work, we introduce a new exponential family
based on a convex relaxation of the hinge loss function using softness and
class-separation parameters. This new family, denoted Soft-SVM, allows us to
prescribe a generalized linear model that effectively bridges between logistic
regression and SVM classification. This new model is interpretable and avoids
data separability issues, attaining good fitting and predictive performance by
automatically adjusting for data label separability via the softness parameter.
These results are confirmed empirically through simulations and case studies as
we compare regularized logistic, SVM, and Soft-SVM regressions and conclude
that the proposed model performs well in terms of both classification and
prediction errors.
Related papers
- An extended asymmetric sigmoid with Perceptron (SIGTRON) for imbalanced linear classification [0.0]
This article presents a new parameterized sigmoid called SIGTRON, and its companion convex model called SIGTRON-imbalanced classification (SIC) model.
In contrast to the conventional $pi$-weighted cost-sensitive learning model, the SIC model does not have an external $pi$-weight on the loss function.
We show that the proposed SIC model is more adaptive to variations of the dataset.
arXiv Detail & Related papers (2023-12-26T13:14:17Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
Differentiable score-based causal discovery methods learn a directed acyclic graph from observational data.
We propose a model-agnostic framework to boost causal discovery performance by dynamically learning the adaptive weights for the Reweighted Score function, ReScore.
arXiv Detail & Related papers (2023-03-06T14:49:59Z) - Using Explainable Boosting Machine to Compare Idiographic and Nomothetic
Approaches for Ecological Momentary Assessment Data [2.0824228840987447]
This paper explores the use of non-linear interpretable machine learning (ML) models in classification problems.
Various ensembles of trees are compared to linear models using imbalanced synthetic and real-world datasets.
In one of the two real-world datasets, knowledge distillation method achieves improved AUC scores.
arXiv Detail & Related papers (2022-04-04T17:56:37Z) - X-model: Improving Data Efficiency in Deep Learning with A Minimax Model [78.55482897452417]
We aim at improving data efficiency for both classification and regression setups in deep learning.
To take the power of both worlds, we propose a novel X-model.
X-model plays a minimax game between the feature extractor and task-specific heads.
arXiv Detail & Related papers (2021-10-09T13:56:48Z) - Variation-Incentive Loss Re-weighting for Regression Analysis on Biased
Data [8.115323786541078]
We aim to improve the accuracy of the regression analysis by addressing the data skewness/bias during model training.
We propose a Variation-Incentive Loss re-weighting method (VILoss) to optimize the gradient descent-based model training for regression analysis.
arXiv Detail & Related papers (2021-09-14T10:22:21Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z) - Robust Classification via Support Vector Machines [1.7520660701924717]
We propose two robust classifiers under data uncertainty.
The first is called Single Perturbation SVM (SP-SVM) and provides a constructive method by allowing a controlled perturbation to one feature of the data.
The second method is called Extreme Empirical Loss SVM (EEL-SVM) and is based on a new empirical loss estimate, namely, the Extreme Empirical Loss (EEL)
arXiv Detail & Related papers (2021-04-27T20:20:12Z) - Shaping Deep Feature Space towards Gaussian Mixture for Visual
Classification [74.48695037007306]
We propose a Gaussian mixture (GM) loss function for deep neural networks for visual classification.
With a classification margin and a likelihood regularization, the GM loss facilitates both high classification performance and accurate modeling of the feature distribution.
The proposed model can be implemented easily and efficiently without using extra trainable parameters.
arXiv Detail & Related papers (2020-11-18T03:32:27Z) - Variational Bayesian Unlearning [54.26984662139516]
We study the problem of approximately unlearning a Bayesian model from a small subset of the training data to be erased.
We show that it is equivalent to minimizing an evidence upper bound which trades off between fully unlearning from erased data vs. not entirely forgetting the posterior belief.
In model training with VI, only an approximate (instead of exact) posterior belief given the full data can be obtained, which makes unlearning even more challenging.
arXiv Detail & Related papers (2020-10-24T11:53:00Z) - Two-step penalised logistic regression for multi-omic data with an
application to cardiometabolic syndrome [62.997667081978825]
We implement a two-step approach to multi-omic logistic regression in which variable selection is performed on each layer separately.
Our approach should be preferred if the goal is to select as many relevant predictors as possible.
Our proposed approach allows us to identify features that characterise cardiometabolic syndrome at the molecular level.
arXiv Detail & Related papers (2020-08-01T10:36:27Z) - A Locally Adaptive Interpretable Regression [7.4267694612331905]
Linear regression is one of the most interpretable prediction models.
In this work, we introduce a locally adaptive interpretable regression (LoAIR)
Our model achieves comparable or better predictive performance than the other state-of-the-art baselines.
arXiv Detail & Related papers (2020-05-07T09:26:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.