One-Dimensional Adapter to Rule Them All: Concepts, Diffusion Models and
Erasing Applications
- URL: http://arxiv.org/abs/2312.16145v2
- Date: Mon, 11 Mar 2024 18:13:54 GMT
- Title: One-Dimensional Adapter to Rule Them All: Concepts, Diffusion Models and
Erasing Applications
- Authors: Mengyao Lyu, Yuhong Yang, Haiwen Hong, Hui Chen, Xuan Jin, Yuan He,
Hui Xue, Jungong Han, Guiguang Ding
- Abstract summary: Existing concept erasing methods in academia are all based on full parameter or specification-based fine-tuning.
Previous model-specific erasure impedes the flexible combination of concepts and the training-free transfer towards other models.
We ground our erasing framework on one-dimensional adapters to erase multiple concepts from most DMs at once across versatile erasing applications.
- Score: 65.66700972754118
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The prevalent use of commercial and open-source diffusion models (DMs) for
text-to-image generation prompts risk mitigation to prevent undesired
behaviors. Existing concept erasing methods in academia are all based on full
parameter or specification-based fine-tuning, from which we observe the
following issues: 1) Generation alternation towards erosion: Parameter drift
during target elimination causes alternations and potential deformations across
all generations, even eroding other concepts at varying degrees, which is more
evident with multi-concept erased; 2) Transfer inability & deployment
inefficiency: Previous model-specific erasure impedes the flexible combination
of concepts and the training-free transfer towards other models, resulting in
linear cost growth as the deployment scenarios increase. To achieve
non-invasive, precise, customizable, and transferable elimination, we ground
our erasing framework on one-dimensional adapters to erase multiple concepts
from most DMs at once across versatile erasing applications. The
concept-SemiPermeable structure is injected as a Membrane (SPM) into any DM to
learn targeted erasing, and meantime the alteration and erosion phenomenon is
effectively mitigated via a novel Latent Anchoring fine-tuning strategy. Once
obtained, SPMs can be flexibly combined and plug-and-play for other DMs without
specific re-tuning, enabling timely and efficient adaptation to diverse
scenarios. During generation, our Facilitated Transport mechanism dynamically
regulates the permeability of each SPM to respond to different input prompts,
further minimizing the impact on other concepts. Quantitative and qualitative
results across ~40 concepts, 7 DMs and 4 erasing applications have demonstrated
the superior erasing of SPM. Our code and pre-tuned SPMs are available on the
project page https://lyumengyao.github.io/projects/spm.
Related papers
- Module-wise Adaptive Adversarial Training for End-to-end Autonomous Driving [33.90341803416033]
We present Module-wise Adaptive Adrial Training (MA2T) for end-to-end autonomous driving models.
We introduce Module-wise Noise Injection, which injects noise before the input of different modules, targeting training models with the guidance of overall objectives.
We also introduce Dynamic Weight Accumulation Adaptation, which incorporates accumulated weight changes to adaptively learn and adjust the loss weights of each module.
arXiv Detail & Related papers (2024-09-11T15:00:18Z) - Reliable and Efficient Concept Erasure of Text-to-Image Diffusion Models [76.39651111467832]
We introduce Reliable and Efficient Concept Erasure (RECE), a novel approach that modifies the model in 3 seconds without necessitating additional fine-tuning.
To mitigate inappropriate content potentially represented by derived embeddings, RECE aligns them with harmless concepts in cross-attention layers.
The derivation and erasure of new representation embeddings are conducted iteratively to achieve a thorough erasure of inappropriate concepts.
arXiv Detail & Related papers (2024-07-17T08:04:28Z) - SHERL: Synthesizing High Accuracy and Efficient Memory for Resource-Limited Transfer Learning [63.93193829913252]
We propose an innovative METL strategy called SHERL for resource-limited scenarios.
In the early route, intermediate outputs are consolidated via an anti-redundancy operation.
In the late route, utilizing minimal late pre-trained layers could alleviate the peak demand on memory overhead.
arXiv Detail & Related papers (2024-07-10T10:22:35Z) - Unleashing Network Potentials for Semantic Scene Completion [50.95486458217653]
This paper proposes a novel SSC framework - Adrial Modality Modulation Network (AMMNet)
AMMNet introduces two core modules: a cross-modal modulation enabling the interdependence of gradient flows between modalities, and a customized adversarial training scheme leveraging dynamic gradient competition.
Extensive experimental results demonstrate that AMMNet outperforms state-of-the-art SSC methods by a large margin.
arXiv Detail & Related papers (2024-03-12T11:48:49Z) - Suppress and Rebalance: Towards Generalized Multi-Modal Face
Anti-Spoofing [26.901402236963374]
Face Anti-Spoofing (FAS) is crucial for securing face recognition systems against presentation attacks.
Many multi-modal FAS approaches have emerged, but they face challenges in generalizing to unseen attacks and deployment conditions.
arXiv Detail & Related papers (2024-02-29T16:06:36Z) - Monotone deep Boltzmann machines [86.50247625239406]
Deep Boltzmann machines (DBMs) are multi-layered probabilistic models governed by a pairwise energy function.
We develop a new class of restricted model, the monotone DBM, which allows for arbitrary self-connection in each layer.
We show that a particular choice of activation results in a fixed-point iteration that gives a variational mean-field solution.
arXiv Detail & Related papers (2023-07-11T03:02:44Z) - Boundary Guided Learning-Free Semantic Control with Diffusion Models [44.37803942479853]
We present our BoundaryDiffusion method for efficient, effective and light-weight semantic control with frozen pre-trained DDMs.
We conduct extensive experiments on DPMs architectures (DDPM, iDDPM) and datasets (CelebA, CelebA-HQ, LSUN-church, LSUN-bedroom, AFHQ-dog) with different resolutions (64, 256)
arXiv Detail & Related papers (2023-02-16T15:21:46Z) - FOSTER: Feature Boosting and Compression for Class-Incremental Learning [52.603520403933985]
Deep neural networks suffer from catastrophic forgetting when learning new categories.
We propose a novel two-stage learning paradigm FOSTER, empowering the model to learn new categories adaptively.
arXiv Detail & Related papers (2022-04-10T11:38:33Z) - Enabling Continual Learning with Differentiable Hebbian Plasticity [18.12749708143404]
Continual learning is the problem of sequentially learning new tasks or knowledge while protecting previously acquired knowledge.
catastrophic forgetting poses a grand challenge for neural networks performing such learning process.
We propose a Differentiable Hebbian Consolidation model which is composed of a Differentiable Hebbian Plasticity.
arXiv Detail & Related papers (2020-06-30T06:42:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.