論文の概要: OpenRL: A Unified Reinforcement Learning Framework
- arxiv url: http://arxiv.org/abs/2312.16189v1
- Date: Wed, 20 Dec 2023 12:04:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-31 03:00:48.487934
- Title: OpenRL: A Unified Reinforcement Learning Framework
- Title(参考訳): OpenRL: 統一強化学習フレームワーク
- Authors: Shiyu Huang, Wentse Chen, Yiwen Sun, Fuqing Bie, Wei-Wei Tu
- Abstract要約: 先進的な強化学習(RL)フレームワークであるOpenRLを紹介する。
シングルエージェントの課題から複雑なマルチエージェントシステムまで、さまざまなタスクに対応するように設計されている。
自然言語処理(NLP)とRLを統合することで、研究者はRLトレーニングと言語中心のタスクを効果的に組み合わせることができる。
- 参考スコア(独自算出の注目度): 19.12129820612253
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present OpenRL, an advanced reinforcement learning (RL) framework designed
to accommodate a diverse array of tasks, from single-agent challenges to
complex multi-agent systems. OpenRL's robust support for self-play training
empowers agents to develop advanced strategies in competitive settings.
Notably, OpenRL integrates Natural Language Processing (NLP) with RL, enabling
researchers to address a combination of RL training and language-centric tasks
effectively. Leveraging PyTorch's robust capabilities, OpenRL exemplifies
modularity and a user-centric approach. It offers a universal interface that
simplifies the user experience for beginners while maintaining the flexibility
experts require for innovation and algorithm development. This equilibrium
enhances the framework's practicality, adaptability, and scalability,
establishing a new standard in RL research. To delve into OpenRL's features, we
invite researchers and enthusiasts to explore our GitHub repository at
https://github.com/OpenRL-Lab/openrl and access our comprehensive documentation
at https://openrl-docs.readthedocs.io.
- Abstract(参考訳): 我々は,単一エージェントの課題から複雑なマルチエージェントシステムに至るまで,さまざまなタスクに対応するための高度な強化学習(RL)フレームワークであるOpenRLを提案する。
OpenRLのセルフプレイトレーニングに対する堅牢なサポートにより、エージェントは競争環境において高度な戦略を開発することができる。
特に、OpenRLは自然言語処理(NLP)とRLを統合しており、研究者はRLトレーニングと言語中心のタスクを効果的に組み合わせることができる。
PyTorchの堅牢な機能を活用することで、OpenRLはモジュール化とユーザ中心のアプローチを実証する。
イノベーションやアルゴリズム開発に必要な柔軟性を維持しながら、初心者のユーザエクスペリエンスをシンプルにするユニバーサルインターフェースを提供する。
この均衡はフレームワークの実用性、適応性、拡張性を高め、RL研究において新しい標準を確立する。
OpenRLの機能を調べるために、研究者や愛好家のGitHubリポジトリをhttps://github.com/OpenRL-Lab/openrlで探索し、https://openrl-docs.readthedocs.ioで包括的なドキュメントにアクセスしてください。
関連論文リスト
- ArCHer: Training Language Model Agents via Hierarchical Multi-Turn RL [80.10358123795946]
大規模言語モデルを微調整するためのマルチターンRLアルゴリズムを構築するためのフレームワークを開発する。
我々のフレームワークは階層的なRLアプローチを採用し、2つのRLアルゴリズムを並列に実行している。
実験により,ArCHerはエージェントタスクの効率と性能を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2024-02-29T18:45:56Z) - RL4CO: an Extensive Reinforcement Learning for Combinatorial Optimization Benchmark [69.19502244910632]
深部強化学習(RL)は、最適化(CO)問題を解く上で大きな利点を示している。
RL4COは,23の最先端メソッドと20以上のCO問題を含む,詳細なライブラリカバレッジを備えた統一ベンチマークである。
効率的なソフトウェアライブラリと実装のベストプラクティスに基づいて構築されたRL4COは、モジュール化された実装と、多様なRLアルゴリズム、ニューラルネットワークアーキテクチャ、推論技術、環境の柔軟な構成を備えている。
論文 参考訳(メタデータ) (2023-06-29T16:57:22Z) - SRL: Scaling Distributed Reinforcement Learning to Over Ten Thousand Cores [13.948640763797776]
本稿では,RLトレーニングアプリケーションを汎用フレームワークに統合する,RLトレーニングのデータフローに関する新しい抽象化を提案する。
スケーラブルで効率的で分散的なRLシステムであるReaLly scalableRLを開発した。
SRLは15k以上のCPUコアでRL実験を大規模に実施した初めての学術コミュニティである。
論文 参考訳(メタデータ) (2023-06-29T05:16:25Z) - Is Reinforcement Learning (Not) for Natural Language Processing?:
Benchmarks, Baselines, and Building Blocks for Natural Language Policy
Optimization [73.74371798168642]
我々は、強化学習による言語生成を最適化するためのオープンソースのモジュールライブラリRL4LMを紹介する。
次に、ターゲット文字列ではなく、報酬関数によって教師される6つの言語生成タスクのセットであるGRUEベンチマークを示す。
最後に,言語生成における動作空間を効果的に削減するNLPOアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-10-03T21:38:29Z) - JORLDY: a fully customizable open source framework for reinforcement
learning [3.1864456096282696]
強化学習(Reinforcement Learning, RL)は、学術分野と産業分野の両方で活発に研究されている。
JORLDYは、Pytorchで実装された20以上の広く使われているRLアルゴリズムを提供する。
JORLDYはOpenAIジム、Unity ML-Agents、Mujoco、Super Mario Bros、Procgenなど、複数のRL環境をサポートしている。
論文 参考訳(メタデータ) (2022-04-11T06:28:27Z) - Jump-Start Reinforcement Learning [68.82380421479675]
本稿では、オフラインデータやデモ、あるいは既存のポリシーを使ってRLポリシーを初期化するメタアルゴリズムを提案する。
特に,タスク解決に2つのポリシーを利用するアルゴリズムであるJump-Start Reinforcement Learning (JSRL)を提案する。
実験により、JSRLは既存の模倣と強化学習アルゴリズムを大幅に上回っていることを示す。
論文 参考訳(メタデータ) (2022-04-05T17:25:22Z) - RL-DARTS: Differentiable Architecture Search for Reinforcement Learning [62.95469460505922]
我々は、強化学習(RL)における微分可能なアーキテクチャ探索(DARTS)の最初の応用の1つであるRL-DARTSを紹介する。
画像エンコーダをDARTSスーパーネットに置き換えることにより、検索方法はサンプリング効率が高く、余分な計算資源が最小限必要であり、また、既存のコードに小さな変更を加える必要がなく、オフ・ポリティクスとオン・ポリティクスのRLアルゴリズムとも互換性がある。
スーパーネットはより優れたセルを徐々に学習し、手作業で設計したポリシーに対して高い競争力を持つ代替アーキテクチャへとつながり、RLポリシーの以前の設計選択も検証できることを示す。
論文 参考訳(メタデータ) (2021-06-04T03:08:43Z) - Improving Reinforcement Learning with Human Assistance: An Argument for
Human Subject Studies with HIPPO Gym [21.4215863934377]
強化学習(Reinforcement Learning、RL)は、ゲームプレイ、ロボティクス制御、その他のシーケンシャルな意思決定タスクのための一般的な機械学習パラダイムである。
本稿では,オープンソースRLフレームワークであるHuman Input Parsing Platform for Openai Gym(HIPPO Gym)を紹介します。
論文 参考訳(メタデータ) (2021-02-02T12:56:02Z) - EasyRL: A Simple and Extensible Reinforcement Learning Framework [3.2173369911280023]
EasyRLは、ユーザがRLエージェントをトレーニングし、評価するためのインタラクティブなグラフィカルユーザインターフェースを提供する。
EasyRLは、単純な組み込みRLエージェントのトレーニングとテストのためのプログラミング知識を必要としない。
EasyRLはカスタムRLエージェントと環境もサポートしており、RLモデルの評価と比較において、RL研究者にとって非常に有益である。
論文 参考訳(メタデータ) (2020-08-04T17:02:56Z) - Integrating Distributed Architectures in Highly Modular RL Libraries [4.297070083645049]
ほとんどの人気のある強化学習ライブラリは、高度にモジュール化されたエージェントの構成性を主張している。
本稿では、RLエージェントを独立した再利用可能なコンポーネントによって異なるスケールで定義できる汎用的アプローチを提案する。
論文 参考訳(メタデータ) (2020-07-06T10:22:07Z) - MushroomRL: Simplifying Reinforcement Learning Research [60.70556446270147]
MushroomRLはオープンソースのPythonライブラリで、強化学習(RL)実験の実装と実行を簡単にするために開発された。
他の利用可能なライブラリと比較して、MushroomRLは、新しいRL方法論の実装とテストの労力を最小限に抑えるために、包括的で柔軟なフレームワークを提供することを目的として作られた。
論文 参考訳(メタデータ) (2020-01-04T17:23:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。