論文の概要: RL4CO: an Extensive Reinforcement Learning for Combinatorial Optimization Benchmark
- arxiv url: http://arxiv.org/abs/2306.17100v4
- Date: Fri, 21 Jun 2024 10:05:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-24 20:37:28.587618
- Title: RL4CO: an Extensive Reinforcement Learning for Combinatorial Optimization Benchmark
- Title(参考訳): RL4CO: Combinatorial Optimization Benchmarkのための拡張強化学習
- Authors: Federico Berto, Chuanbo Hua, Junyoung Park, Laurin Luttmann, Yining Ma, Fanchen Bu, Jiarui Wang, Haoran Ye, Minsu Kim, Sanghyeok Choi, Nayeli Gast Zepeda, André Hottung, Jianan Zhou, Jieyi Bi, Yu Hu, Fei Liu, Hyeonah Kim, Jiwoo Son, Haeyeon Kim, Davide Angioni, Wouter Kool, Zhiguang Cao, Qingfu Zhang, Joungho Kim, Jie Zhang, Kijung Shin, Cathy Wu, Sungsoo Ahn, Guojie Song, Changhyun Kwon, Kevin Tierney, Lin Xie, Jinkyoo Park,
- Abstract要約: 深部強化学習(RL)は、最適化(CO)問題を解く上で大きな利点を示している。
RL4COは,23の最先端メソッドと20以上のCO問題を含む,詳細なライブラリカバレッジを備えた統一ベンチマークである。
効率的なソフトウェアライブラリと実装のベストプラクティスに基づいて構築されたRL4COは、モジュール化された実装と、多様なRLアルゴリズム、ニューラルネットワークアーキテクチャ、推論技術、環境の柔軟な構成を備えている。
- 参考スコア(独自算出の注目度): 69.19502244910632
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep reinforcement learning (RL) has recently shown significant benefits in solving combinatorial optimization (CO) problems, reducing reliance on domain expertise, and improving computational efficiency. However, the field lacks a unified benchmark for easy development and standardized comparison of algorithms across diverse CO problems. To fill this gap, we introduce RL4CO, a unified and extensive benchmark with in-depth library coverage of 23 state-of-the-art methods and more than 20 CO problems. Built on efficient software libraries and best practices in implementation, RL4CO features modularized implementation and flexible configuration of diverse RL algorithms, neural network architectures, inference techniques, and environments. RL4CO allows researchers to seamlessly navigate existing successes and develop their unique designs, facilitating the entire research process by decoupling science from heavy engineering. We also provide extensive benchmark studies to inspire new insights and future work. RL4CO has attracted numerous researchers in the community and is open-sourced at https://github.com/ai4co/rl4co.
- Abstract(参考訳): 深部強化学習(RL)は、最近、組合せ最適化(CO)問題の解決、ドメインの専門知識への依存の軽減、計算効率の向上において、大きなメリットを示している。
しかし、この分野は様々なCO問題にまたがるアルゴリズムの簡易な開発と標準化比較のための統一されたベンチマークを欠いている。
このギャップを埋めるために、23の最先端メソッドと20以上のCO問題の詳細なライブラリカバレッジを備えた、統一的で広範なベンチマークであるRL4COを導入する。
効率的なソフトウェアライブラリと実装のベストプラクティスに基づいて構築されたRL4COは、モジュール化された実装と、多様なRLアルゴリズム、ニューラルネットワークアーキテクチャ、推論技術、環境の柔軟な構成を備えている。
RL4COは、研究者が既存の成功をシームレスにナビゲートし、独自のデザインを開発することを可能にする。
また、新たな洞察と今後の作業を促すために、広範なベンチマーク研究も行っています。
RL4COはコミュニティの多くの研究者を惹きつけ、https://github.com/ai4co/rl4coでオープンソース化されている。
関連論文リスト
- Multi-Agent Environments for Vehicle Routing Problems [1.0179489519625304]
本稿では,従来の車両ルーティング問題をシミュレートするマルチエージェント環境からなるライブラリを提案する。
PyTorch上に構築されたこのライブラリは、新しいルーティング問題のカスタマイズと導入を容易にする、柔軟なモジュラーアーキテクチャ設計を提供する。
論文 参考訳(メタデータ) (2024-11-21T18:46:23Z) - Generative AI for Deep Reinforcement Learning: Framework, Analysis, and Use Cases [60.30995339585003]
深部強化学習(DRL)は様々な分野に広く適用されており、優れた成果を上げている。
DRLは、サンプル効率の低下や一般化の低さなど、いくつかの制限に直面している。
本稿では、これらの問題に対処し、DRLアルゴリズムの性能を向上させるために、生成AI(GAI)を活用する方法について述べる。
論文 参考訳(メタデータ) (2024-05-31T01:25:40Z) - Transform then Explore: a Simple and Effective Technique for Exploratory Combinatorial Optimization with Reinforcement Learning [11.531786269804707]
グラフ上の最適化問題(COP)を解決するためのゲージ変換(GT)手法を提案する。
GTは非常にシンプルで、10行未満のPythonコードで実装でき、ほとんどの強化学習モデルに適用できる。
GTを用いた従来のRLモデルでは,MaxCut問題に対して最先端の性能が得られた。
論文 参考訳(メタデータ) (2024-04-06T15:31:17Z) - Reinforcement Learning-assisted Evolutionary Algorithm: A Survey and
Research Opportunities [63.258517066104446]
進化的アルゴリズムの構成要素として統合された強化学習は,近年,優れた性能を示している。
本稿では,RL-EA 統合手法,RL-EA が採用する RL-EA 支援戦略,および既存文献による適用について論じる。
RL-EAセクションの適用例では、RL-EAのいくつかのベンチマークおよび様々な公開データセットにおける優れた性能を示す。
論文 参考訳(メタデータ) (2023-08-25T15:06:05Z) - SRL: Scaling Distributed Reinforcement Learning to Over Ten Thousand Cores [13.948640763797776]
本稿では,RLトレーニングアプリケーションを汎用フレームワークに統合する,RLトレーニングのデータフローに関する新しい抽象化を提案する。
スケーラブルで効率的で分散的なRLシステムであるReaLly scalableRLを開発した。
SRLは15k以上のCPUコアでRL実験を大規模に実施した初めての学術コミュニティである。
論文 参考訳(メタデータ) (2023-06-29T05:16:25Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
そこで本研究では,汎用的な渋滞制御(CC)アルゴリズムを設計するための新しい強化学習(RL)手法を提案する。
我々の解であるMARLINは、Soft Actor-Criticアルゴリズムを用いてエントロピーとリターンの両方を最大化する。
我々は,MARLINを実ネットワーク上で訓練し,実ミスマッチを克服した。
論文 参考訳(メタデータ) (2023-02-02T18:27:20Z) - Ensemble Reinforcement Learning in Continuous Spaces -- A Hierarchical
Multi-Step Approach for Policy Training [4.982806898121435]
本稿では,革新的な多段階統合手法に基づいて,基礎学習者のアンサンブルを訓練する手法を提案する。
本手法は,学習者間コラボレーションを効果的に促進するアンサンブルDRLのための新しい階層学習アルゴリズムの開発を可能にする。
また、このアルゴリズムは複数のベンチマークRL問題に対していくつかの最先端のDRLアルゴリズムより優れていることを示す。
論文 参考訳(メタデータ) (2022-09-29T00:42:44Z) - Sym-NCO: Leveraging Symmetricity for Neural Combinatorial Optimization [16.127824824652077]
深部強化学習(DRL)に基づく最適化(CO)法は,従来のCO解法に比べて有意な効果を示した。
本稿では,既存のDRL-NCO法の性能向上を実現する新しいトレーニング手法であるSym-NCOを提案する。
論文 参考訳(メタデータ) (2022-05-26T07:55:43Z) - CATCH: Context-based Meta Reinforcement Learning for Transferrable
Architecture Search [102.67142711824748]
CATCHは、転送可能なarChitecture searcHのための、Context-bAsed meTa強化学習アルゴリズムである。
メタラーニングとRLの組み合わせにより、CATCHは検索空間に依存しないまま、新しいタスクに効率的に適応できる。
また、ImageNet、COCO、Cityscapesの競合ネットワークとしてクロスドメインアーキテクチャサーチを扱うこともできる。
論文 参考訳(メタデータ) (2020-07-18T09:35:53Z) - Off-Policy Reinforcement Learning for Efficient and Effective GAN
Architecture Search [50.40004966087121]
本稿では,GANアーキテクチャ探索のための強化学習に基づくニューラルアーキテクチャ探索手法を提案する。
鍵となる考え方は、よりスムーズなアーキテクチャサンプリングのためのマルコフ決定プロセス(MDP)として、GANアーキテクチャ探索問題を定式化することである。
我々は,従来の政策によって生成されたサンプルを効率的に活用する,非政治的なGANアーキテクチャ探索アルゴリズムを利用する。
論文 参考訳(メタデータ) (2020-07-17T18:29:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。