Time Travelling Pixels: Bitemporal Features Integration with Foundation
Model for Remote Sensing Image Change Detection
- URL: http://arxiv.org/abs/2312.16202v1
- Date: Sat, 23 Dec 2023 08:56:52 GMT
- Title: Time Travelling Pixels: Bitemporal Features Integration with Foundation
Model for Remote Sensing Image Change Detection
- Authors: Keyan Chen, Chengyang Liu, Wenyuan Li, Zili Liu, Hao Chen, Haotian
Zhang, Zhengxia Zou, Zhenwei Shi
- Abstract summary: Time Travelling Pixels (TTP) is a novel approach that integrates the latent knowledge foundation model into change detection.
The state-of-the-art results obtained on the LEVIR-CD underscore the efficacy of the TTP.
- Score: 28.40070234949818
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Change detection, a prominent research area in remote sensing, is pivotal in
observing and analyzing surface transformations. Despite significant
advancements achieved through deep learning-based methods, executing
high-precision change detection in spatio-temporally complex remote sensing
scenarios still presents a substantial challenge. The recent emergence of
foundation models, with their powerful universality and generalization
capabilities, offers potential solutions. However, bridging the gap of data and
tasks remains a significant obstacle. In this paper, we introduce Time
Travelling Pixels (TTP), a novel approach that integrates the latent knowledge
of the SAM foundation model into change detection. This method effectively
addresses the domain shift in general knowledge transfer and the challenge of
expressing homogeneous and heterogeneous characteristics of multi-temporal
images. The state-of-the-art results obtained on the LEVIR-CD underscore the
efficacy of the TTP. The Code is available at \url{https://kychen.me/TTP}.
Related papers
- Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [58.60915132222421]
We introduce an approach that is both general and parameter-efficient for face forgery detection.
We design a forgery-style mixture formulation that augments the diversity of forgery source domains.
We show that the designed model achieves state-of-the-art generalizability with significantly reduced trainable parameters.
arXiv Detail & Related papers (2024-08-23T01:53:36Z) - Novel Change Detection Framework in Remote Sensing Imagery Using Diffusion Models and Structural Similarity Index (SSIM) [0.0]
Change detection is a crucial task in remote sensing, enabling the monitoring of environmental changes, urban growth, and disaster impact.
Recent advancements in machine learning, particularly generative models like diffusion models, offer new opportunities for enhancing change detection accuracy.
We propose a novel change detection framework that combines the strengths of Stable Diffusion models with the Structural Similarity Index (SSIM) to create robust and interpretable change maps.
arXiv Detail & Related papers (2024-08-20T07:54:08Z) - Integrated Dynamic Phenological Feature for Remote Sensing Image Land Cover Change Detection [5.109855690325439]
We introduce the InPhea model, which integrates phenological features into a remote sensing image CD framework.
A constrainer with four constraint modules and a multi-stage contrastive learning approach is employed to aid in the model's understanding of phenological characteristics.
Experiments on the HRSCD, SECD, and PSCD-Wuhan datasets reveal that InPhea outperforms other models.
arXiv Detail & Related papers (2024-08-08T01:07:28Z) - Changen2: Multi-Temporal Remote Sensing Generative Change Foundation Model [62.337749660637755]
We present change data generators based on generative models which are cheap and automatic.
Changen2 is a generative change foundation model that can be trained at scale via self-supervision.
The resulting model possesses inherent zero-shot change detection capabilities and excellent transferability.
arXiv Detail & Related papers (2024-06-26T01:03:39Z) - DiffuBox: Refining 3D Object Detection with Point Diffusion [74.01759893280774]
We introduce a novel diffusion-based box refinement approach to ensure robust 3D object detection and localization.
We evaluate this approach under various domain adaptation settings, and our results reveal significant improvements across different datasets.
arXiv Detail & Related papers (2024-05-25T03:14:55Z) - ChangeBind: A Hybrid Change Encoder for Remote Sensing Change Detection [16.62779899494721]
Change detection (CD) is a fundamental task in remote sensing (RS) which aims to detect the semantic changes between the same geographical regions at different time stamps.
We propose an effective Siamese-based framework to encode the semantic changes occurring in the bi-temporal RS images.
arXiv Detail & Related papers (2024-04-26T17:47:14Z) - LEAP-VO: Long-term Effective Any Point Tracking for Visual Odometry [52.131996528655094]
We present the Long-term Effective Any Point Tracking (LEAP) module.
LEAP innovatively combines visual, inter-track, and temporal cues with mindfully selected anchors for dynamic track estimation.
Based on these traits, we develop LEAP-VO, a robust visual odometry system adept at handling occlusions and dynamic scenes.
arXiv Detail & Related papers (2024-01-03T18:57:27Z) - Transformer-based Multimodal Change Detection with Multitask Consistency Constraints [10.906283981247796]
Current change detection methods struggle with the multitask conflicts between semantic and height change detection tasks.
We propose an efficient Transformer-based network that learns shared representation between cross-dimensional inputs through cross-attention.
Compared to five state-of-the-art change detection methods, our model demonstrates consistent multitask superiority in terms of semantic and height change detection.
arXiv Detail & Related papers (2023-10-13T17:38:45Z) - Scalable Multi-Temporal Remote Sensing Change Data Generation via
Simulating Stochastic Change Process [21.622442722863028]
We present a scalable multi-temporal remote sensing change data generator via generative modeling.
Our main idea is to simulate a change process over time.
To solve these two problems, we present the change generator (Changen), a GAN-based GPCM, enabling controllable object change data generation.
arXiv Detail & Related papers (2023-09-29T07:37:26Z) - Transformer Inertial Poser: Attention-based Real-time Human Motion
Reconstruction from Sparse IMUs [79.72586714047199]
We propose an attention-based deep learning method to reconstruct full-body motion from six IMU sensors in real-time.
Our method achieves new state-of-the-art results both quantitatively and qualitatively, while being simple to implement and smaller in size.
arXiv Detail & Related papers (2022-03-29T16:24:52Z) - A Parallel Down-Up Fusion Network for Salient Object Detection in
Optical Remote Sensing Images [82.87122287748791]
We propose a novel Parallel Down-up Fusion network (PDF-Net) for salient object detection in optical remote sensing images (RSIs)
It takes full advantage of the in-path low- and high-level features and cross-path multi-resolution features to distinguish diversely scaled salient objects and suppress the cluttered backgrounds.
Experiments on the ORSSD dataset demonstrate that the proposed network is superior to the state-of-the-art approaches both qualitatively and quantitatively.
arXiv Detail & Related papers (2020-10-02T05:27:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.