STRIDE: Single-video based Temporally Continuous Occlusion-Robust 3D Pose Estimation
- URL: http://arxiv.org/abs/2312.16221v4
- Date: Wed, 04 Dec 2024 10:25:18 GMT
- Title: STRIDE: Single-video based Temporally Continuous Occlusion-Robust 3D Pose Estimation
- Authors: Rohit Lal, Saketh Bachu, Yash Garg, Arindam Dutta, Calvin-Khang Ta, Dripta S. Raychaudhuri, Hannah Dela Cruz, M. Salman Asif, Amit K. Roy-Chowdhury,
- Abstract summary: We propose STRIDE (Single-video based TempoRally contInuous Occlusion-Robust 3D Estimation Pose), a novel Test-Time Training (TTT) approach to fit a human motion prior to each video.
Our framework demonstrates flexibility by being model-agnostic, allowing us to use any off-the-shelf 3D pose estimation method for improving robustness and temporal consistency.
- Score: 27.854074900345314
- License:
- Abstract: The capability to accurately estimate 3D human poses is crucial for diverse fields such as action recognition, gait recognition, and virtual/augmented reality. However, a persistent and significant challenge within this field is the accurate prediction of human poses under conditions of severe occlusion. Traditional image-based estimators struggle with heavy occlusions due to a lack of temporal context, resulting in inconsistent predictions. While video-based models benefit from processing temporal data, they encounter limitations when faced with prolonged occlusions that extend over multiple frames. This challenge arises because these models struggle to generalize beyond their training datasets, and the variety of occlusions is hard to capture in the training data. Addressing these challenges, we propose STRIDE (Single-video based TempoRally contInuous Occlusion-Robust 3D Pose Estimation), a novel Test-Time Training (TTT) approach to fit a human motion prior for each video. This approach specifically handles occlusions that were not encountered during the model's training. By employing STRIDE, we can refine a sequence of noisy initial pose estimates into accurate, temporally coherent poses during test time, effectively overcoming the limitations of prior methods. Our framework demonstrates flexibility by being model-agnostic, allowing us to use any off-the-shelf 3D pose estimation method for improving robustness and temporal consistency. We validate STRIDE's efficacy through comprehensive experiments on challenging datasets like Occluded Human3.6M, Human3.6M, and OCMotion, where it not only outperforms existing single-image and video-based pose estimation models but also showcases superior handling of substantial occlusions, achieving fast, robust, accurate, and temporally consistent 3D pose estimates. Code is made publicly available at https://github.com/take2rohit/stride
Related papers
- UPose3D: Uncertainty-Aware 3D Human Pose Estimation with Cross-View and Temporal Cues [55.69339788566899]
UPose3D is a novel approach for multi-view 3D human pose estimation.
It improves robustness and flexibility without requiring direct 3D annotations.
arXiv Detail & Related papers (2024-04-23T00:18:00Z) - Occlusion Resilient 3D Human Pose Estimation [52.49366182230432]
Occlusions remain one of the key challenges in 3D body pose estimation from single-camera video sequences.
We demonstrate the effectiveness of this approach compared to state-of-the-art techniques that infer poses from single-camera sequences.
arXiv Detail & Related papers (2024-02-16T19:29:43Z) - Live Stream Temporally Embedded 3D Human Body Pose and Shape Estimation [13.40702053084305]
We present a temporally embedded 3D human body pose and shape estimation (TePose) method to improve the accuracy and temporal consistency pose in live stream videos.
A multi-scale convolutional network is presented as the motion discriminator for adversarial training using datasets without any 3D labeling.
arXiv Detail & Related papers (2022-07-25T21:21:59Z) - Occluded Human Body Capture with Self-Supervised Spatial-Temporal Motion
Prior [7.157324258813676]
We build the first 3D occluded motion dataset(OcMotion), which can be used for both training and testing.
A spatial-temporal layer is then designed to learn joint-level correlations.
Experimental results show that our method can generate accurate and coherent human motions from occluded videos with good generalization ability and runtime efficiency.
arXiv Detail & Related papers (2022-07-12T08:15:11Z) - Uncertainty-Aware Adaptation for Self-Supervised 3D Human Pose
Estimation [70.32536356351706]
We introduce MRP-Net that constitutes a common deep network backbone with two output heads subscribing to two diverse configurations.
We derive suitable measures to quantify prediction uncertainty at both pose and joint level.
We present a comprehensive evaluation of the proposed approach and demonstrate state-of-the-art performance on benchmark datasets.
arXiv Detail & Related papers (2022-03-29T07:14:58Z) - Learning Dynamics via Graph Neural Networks for Human Pose Estimation
and Tracking [98.91894395941766]
We propose a novel online approach to learning the pose dynamics, which are independent of pose detections in current fame.
Specifically, we derive this prediction of dynamics through a graph neural network(GNN) that explicitly accounts for both spatial-temporal and visual information.
Experiments on PoseTrack 2017 and PoseTrack 2018 datasets demonstrate that the proposed method achieves results superior to the state of the art on both human pose estimation and tracking tasks.
arXiv Detail & Related papers (2021-06-07T16:36:50Z) - Self-Attentive 3D Human Pose and Shape Estimation from Videos [82.63503361008607]
We present a video-based learning algorithm for 3D human pose and shape estimation.
We exploit temporal information in videos and propose a self-attention module.
We evaluate our method on the 3DPW, MPI-INF-3DHP, and Human3.6M datasets.
arXiv Detail & Related papers (2021-03-26T00:02:19Z) - Deep Dual Consecutive Network for Human Pose Estimation [44.41818683253614]
We propose a novel multi-frame human pose estimation framework, leveraging abundant temporal cues between video frames to facilitate keypoint detection.
Our method ranks No.1 in the Multi-frame Person Pose Challenge Challenge on the large-scale benchmark datasets PoseTrack 2017 and PoseTrack 2018.
arXiv Detail & Related papers (2021-03-12T13:11:27Z) - Multi-Scale Networks for 3D Human Pose Estimation with Inference Stage
Optimization [33.02708860641971]
Estimating 3D human poses from a monocular video is still a challenging task.
Many existing methods drop when the target person is cluded by other objects, or the motion is too fast/slow relative to the scale and speed of the training data.
We introduce atemporal-temporal network for robust 3D human pose estimation.
arXiv Detail & Related papers (2020-10-13T15:24:28Z) - Kinematic-Structure-Preserved Representation for Unsupervised 3D Human
Pose Estimation [58.72192168935338]
Generalizability of human pose estimation models developed using supervision on large-scale in-studio datasets remains questionable.
We propose a novel kinematic-structure-preserved unsupervised 3D pose estimation framework, which is not restrained by any paired or unpaired weak supervisions.
Our proposed model employs three consecutive differentiable transformations named as forward-kinematics, camera-projection and spatial-map transformation.
arXiv Detail & Related papers (2020-06-24T23:56:33Z) - 3D Human Pose Estimation using Spatio-Temporal Networks with Explicit
Occlusion Training [40.933783830017035]
Estimating 3D poses from a monocular task is still a challenging task, despite the significant progress that has been made in recent years.
We introduce a-temporal video network for robust 3D human pose estimation.
We apply multi-scale spatial features for 2D joints or keypoints prediction in each individual frame, and multistride temporal convolutional net-works (TCNs) to estimate 3D joints or keypoints.
arXiv Detail & Related papers (2020-04-07T09:12:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.