StarPose: 3D Human Pose Estimation via Spatial-Temporal Autoregressive Diffusion
- URL: http://arxiv.org/abs/2508.02056v1
- Date: Mon, 04 Aug 2025 04:50:05 GMT
- Title: StarPose: 3D Human Pose Estimation via Spatial-Temporal Autoregressive Diffusion
- Authors: Haoxin Yang, Weihong Chen, Xuemiao Xu, Cheng Xu, Peng Xiao, Cuifeng Sun, Shaoyu Huang, Shengfeng He,
- Abstract summary: StarPose is an autoregressive diffusion framework for 3D human pose estimation.<n>It incorporates historical 3D pose predictions and spatial-temporal physical guidance.<n>It achieves superior accuracy and temporal consistency in 3D human pose estimation.
- Score: 29.682018018059043
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Monocular 3D human pose estimation remains a challenging task due to inherent depth ambiguities and occlusions. Compared to traditional methods based on Transformers or Convolutional Neural Networks (CNNs), recent diffusion-based approaches have shown superior performance, leveraging their probabilistic nature and high-fidelity generation capabilities. However, these methods often fail to account for the spatial and temporal correlations across predicted frames, resulting in limited temporal consistency and inferior accuracy in predicted 3D pose sequences. To address these shortcomings, this paper proposes StarPose, an autoregressive diffusion framework that effectively incorporates historical 3D pose predictions and spatial-temporal physical guidance to significantly enhance both the accuracy and temporal coherence of pose predictions. Unlike existing approaches, StarPose models the 2D-to-3D pose mapping as an autoregressive diffusion process. By synergically integrating previously predicted 3D poses with 2D pose inputs via a Historical Pose Integration Module (HPIM), the framework generates rich and informative historical pose embeddings that guide subsequent denoising steps, ensuring temporally consistent predictions. In addition, a fully plug-and-play Spatial-Temporal Physical Guidance (STPG) mechanism is tailored to refine the denoising process in an iterative manner, which further enforces spatial anatomical plausibility and temporal motion dynamics, rendering robust and realistic pose estimates. Extensive experiments on benchmark datasets demonstrate that StarPose outperforms state-of-the-art methods, achieving superior accuracy and temporal consistency in 3D human pose estimation. Code is available at https://github.com/wileychan/StarPose.
Related papers
- EMoTive: Event-guided Trajectory Modeling for 3D Motion Estimation [59.33052312107478]
Event cameras offer possibilities for 3D motion estimation through continuous adaptive pixel-level responses to scene changes.<n>This paper presents EMove, a novel event-based framework that models-uniform trajectories via event-guided parametric curves.<n>For motion representation, we introduce a density-aware adaptation mechanism to fuse spatial and temporal features under event guidance.<n>The final 3D motion estimation is achieved through multi-temporal sampling of parametric trajectories, flows and depth motion fields.
arXiv Detail & Related papers (2025-03-14T13:15:54Z) - STGFormer: Spatio-Temporal GraphFormer for 3D Human Pose Estimation in Video [7.345621536750547]
This paper presents the S-Temporal GraphFormer framework (STGFormer) for 3D human pose estimation in videos.<n>First, we introduce a STG attention mechanism, designed to more effectively leverage the inherent graph distributions of human body.<n>Next, we present a Modulated Hop-wise Regular GCN to independently process temporal and spatial dimensions in parallel.<n>Finally, we demonstrate our method state-of-the-art performance on the Human3.6M and MPIINF-3DHP datasets.
arXiv Detail & Related papers (2024-07-14T06:45:27Z) - UPose3D: Uncertainty-Aware 3D Human Pose Estimation with Cross-View and Temporal Cues [55.69339788566899]
UPose3D is a novel approach for multi-view 3D human pose estimation.
It improves robustness and flexibility without requiring direct 3D annotations.
arXiv Detail & Related papers (2024-04-23T00:18:00Z) - STRIDE: Single-video based Temporally Continuous Occlusion-Robust 3D Pose Estimation [27.854074900345314]
We propose STRIDE (Single-video based TempoRally contInuous Occlusion-Robust 3D Estimation Pose), a novel Test-Time Training (TTT) approach to fit a human motion prior to each video.<n>Our framework demonstrates flexibility by being model-agnostic, allowing us to use any off-the-shelf 3D pose estimation method for improving robustness and temporal consistency.
arXiv Detail & Related papers (2023-12-24T11:05:10Z) - Unsupervised 3D Pose Estimation with Non-Rigid Structure-from-Motion
Modeling [83.76377808476039]
We propose a new modeling method for human pose deformations and design an accompanying diffusion-based motion prior.
Inspired by the field of non-rigid structure-from-motion, we divide the task of reconstructing 3D human skeletons in motion into the estimation of a 3D reference skeleton.
A mixed spatial-temporal NRSfMformer is used to simultaneously estimate the 3D reference skeleton and the skeleton deformation of each frame from 2D observations sequence.
arXiv Detail & Related papers (2023-08-18T16:41:57Z) - A generic diffusion-based approach for 3D human pose prediction in the
wild [68.00961210467479]
3D human pose forecasting, i.e., predicting a sequence of future human 3D poses given a sequence of past observed ones, is a challenging-temporal task.
We provide a unified formulation in which incomplete elements (no matter in the prediction or observation) are treated as noise and propose a conditional diffusion model that denoises them and forecasts plausible poses.
We investigate our findings on four standard datasets and obtain significant improvements over the state-of-the-art.
arXiv Detail & Related papers (2022-10-11T17:59:54Z) - Live Stream Temporally Embedded 3D Human Body Pose and Shape Estimation [13.40702053084305]
We present a temporally embedded 3D human body pose and shape estimation (TePose) method to improve the accuracy and temporal consistency pose in live stream videos.
A multi-scale convolutional network is presented as the motion discriminator for adversarial training using datasets without any 3D labeling.
arXiv Detail & Related papers (2022-07-25T21:21:59Z) - Uncertainty-Aware Adaptation for Self-Supervised 3D Human Pose
Estimation [70.32536356351706]
We introduce MRP-Net that constitutes a common deep network backbone with two output heads subscribing to two diverse configurations.
We derive suitable measures to quantify prediction uncertainty at both pose and joint level.
We present a comprehensive evaluation of the proposed approach and demonstrate state-of-the-art performance on benchmark datasets.
arXiv Detail & Related papers (2022-03-29T07:14:58Z) - Consistency Guided Scene Flow Estimation [159.24395181068218]
CGSF is a self-supervised framework for the joint reconstruction of 3D scene structure and motion from stereo video.
We show that the proposed model can reliably predict disparity and scene flow in challenging imagery.
It achieves better generalization than the state-of-the-art, and adapts quickly and robustly to unseen domains.
arXiv Detail & Related papers (2020-06-19T17:28:07Z) - A Graph Attention Spatio-temporal Convolutional Network for 3D Human
Pose Estimation in Video [7.647599484103065]
We improve the learning of constraints in human skeleton by modeling local global spatial information via attention mechanisms.
Our approach effectively mitigates depth ambiguity and self-occlusion, generalizes to half upper body estimation, and achieves competitive performance on 2D-to-3D video pose estimation.
arXiv Detail & Related papers (2020-03-11T14:54:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.