論文の概要: Domain Generalization with Vital Phase Augmentation
- arxiv url: http://arxiv.org/abs/2312.16451v1
- Date: Wed, 27 Dec 2023 07:35:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-29 19:27:03.516996
- Title: Domain Generalization with Vital Phase Augmentation
- Title(参考訳): Vital Phase Augmentationによるドメインの一般化
- Authors: Ingyun Lee, Wooju Lee, Hyun Myung
- Abstract要約: ディープニューラルネットワークは画像分類において顕著な性能を示している。
しかし, 入力データの劣化により性能は著しく低下した。
本研究では, クリーンデータと破損データの両方の性能向上を図った提案手法の実験的評価を行った。
- 参考スコア(独自算出の注目度): 11.114064837770517
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks have shown remarkable performance in image
classification. However, their performance significantly deteriorates with
corrupted input data. Domain generalization methods have been proposed to train
robust models against out-of-distribution data. Data augmentation in the
frequency domain is one of such approaches that enable a model to learn phase
features to establish domain-invariant representations. This approach changes
the amplitudes of the input data while preserving the phases. However, using
fixed phases leads to susceptibility to phase fluctuations because amplitudes
and phase fluctuations commonly occur in out-of-distribution. In this study, to
address this problem, we introduce an approach using finite variation of the
phases of input data rather than maintaining fixed phases. Based on the
assumption that the degree of domain-invariant features varies for each phase,
we propose a method to distinguish phases based on this degree. In addition, we
propose a method called vital phase augmentation (VIPAug) that applies the
variation to the phases differently according to the degree of domain-invariant
features of given phases. The model depends more on the vital phases that
contain more domain-invariant features for attaining robustness to amplitude
and phase fluctuations. We present experimental evaluations of our proposed
approach, which exhibited improved performance for both clean and corrupted
data. VIPAug achieved SOTA performance on the benchmark CIFAR-10 and CIFAR-100
datasets, as well as near-SOTA performance on the ImageNet-100 and ImageNet
datasets. Our code is available at https://github.com/excitedkid/vipaug.
- Abstract(参考訳): ディープニューラルネットワークは画像分類において顕著な性能を示している。
しかし, 入力データの劣化により性能は著しく低下した。
分散データに対するロバストモデルをトレーニングするためにドメイン一般化法が提案されている。
周波数領域におけるデータ拡張は、モデルが位相特徴を学習してドメイン不変表現を確立することを可能にするアプローチの1つである。
このアプローチは、位相を保ちながら入力データの振幅を変化させる。
しかしながら、固定位相を用いると、振幅と位相の変動が分布外に存在するため、位相変動への感受性が生じる。
本研究では,この問題を解決するために,固定位相の維持よりも入力データの位相の有限変化を用いた手法を提案する。
ドメイン不変特徴の程度が各位相ごとに異なるという仮定に基づき、この次数に基づいて位相を識別する手法を提案する。
さらに, 与えられた位相の領域不変特性の度合いに応じて, 位相に異なる変化を施す「バイタル位相拡張法(VIPAug)」を提案する。
このモデルは、振幅と位相変動に対する堅牢性を達成するために、よりドメイン不変の特徴を含む必要不可欠な位相に依存する。
本研究では, クリーンデータと破損データの両方の性能向上を示す提案手法を実験的に評価した。
VIPAug は、ベンチマーク CIFAR-10 と CIFAR-100 のデータセットで SOTA のパフォーマンス、ImageNet-100 と ImageNet のデータセットで SOTA に近いパフォーマンスを達成した。
私たちのコードはhttps://github.com/excitedkid/vipaugで入手できる。
関連論文リスト
- Visual Fourier Prompt Tuning [63.66866445034855]
本稿では,大規模なトランスフォーマーモデルに適用するための汎用的で効果的な方法として,Visual Fourier Prompt Tuning (VFPT)法を提案する。
提案手法では,高速フーリエ変換を即時埋め込みに取り入れ,空間領域情報と周波数領域情報の両方を調和的に検討する。
提案手法は,2つのベンチマークにおいて,現状のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2024-11-02T18:18:35Z) - FIESTA: Fourier-Based Semantic Augmentation with Uncertainty Guidance for Enhanced Domain Generalizability in Medical Image Segmentation [10.351755243183383]
医用画像セグメンテーション(MIS)における単一ソース領域一般化(SDG)は、1つのソースドメインのみのデータを使用してモデルを一般化し、目に見えないターゲットドメインからデータをセグメントすることを目的としている。
既存の手法では、MISでよく見られる詳細や不確実な領域を十分に考慮できないことが多く、誤分類につながる。
本稿では、不確実性ガイダンスを用いたFIESTAと呼ばれるフーリエに基づく意味拡張手法を提案する。
論文 参考訳(メタデータ) (2024-06-20T13:37:29Z) - Pyramid Hierarchical Transformer for Hyperspectral Image Classification [1.9427851979929982]
ピラミッド型階層変換器(PyFormer)を提案する。
この革新的なアプローチは、入力データを階層的にセグメントにまとめ、それぞれが異なる抽象レベルを表す。
その結果,従来の手法よりも提案手法の方が優れていることが示された。
論文 参考訳(メタデータ) (2024-04-23T11:41:19Z) - Misalignment-Robust Frequency Distribution Loss for Image Transformation [51.0462138717502]
本稿では,画像強調や超解像といった深層学習に基づく画像変換手法における共通の課題に対処することを目的とする。
本稿では、周波数領域内における分布距離を計算するための、新しいシンプルな周波数分布損失(FDL)を提案する。
本手法は,周波数領域におけるグローバル情報の思慮深い活用により,トレーニング制約として実証的に有効であることが実証された。
論文 参考訳(メタデータ) (2024-02-28T09:27:41Z) - Improving Misaligned Multi-modality Image Fusion with One-stage
Progressive Dense Registration [67.23451452670282]
多モード画像間の相違は、画像融合の課題を引き起こす。
マルチスケールプログレッシブ・センス・レジストレーション方式を提案する。
このスキームは、一段階最適化のみで粗大な登録を行う。
論文 参考訳(メタデータ) (2023-08-22T03:46:24Z) - A Novel Cross-Perturbation for Single Domain Generalization [54.612933105967606]
単一ドメインの一般化は、モデルが単一のソースドメインでトレーニングされたときに未知のドメインに一般化する能力を高めることを目的としている。
トレーニングデータの限られた多様性は、ドメイン不変の特徴の学習を妨げ、結果として一般化性能を損なう。
トレーニングデータの多様性を高めるために,CPerbを提案する。
論文 参考訳(メタデータ) (2023-08-02T03:16:12Z) - DiffPhase: Generative Diffusion-based STFT Phase Retrieval [15.16865739526702]
拡散確率モデルは最近、音声強調や合成を含む様々なタスクで使われている。
本研究は,位相探索に特化して音声強調拡散モデルを適用し,音声領域における過去の研究に基づいて構築する。
音声品質とインテリジェンス指標を用いた評価は, 位相探索作業に拡散アプローチが適していることを示し, 性能は古典的手法と近代的手法に勝っている。
論文 参考訳(メタデータ) (2022-11-08T15:50:35Z) - f-DM: A Multi-stage Diffusion Model via Progressive Signal
Transformation [56.04628143914542]
拡散モデル(DM)は、最近、様々な領域で生成モデリングを行うためのSoTAツールとして登場した。
本稿では、プログレッシブ信号変換が可能なDMの一般化されたファミリであるf-DMを提案する。
我々は、ダウンサンプリング、ぼやけ、学習された変換を含む様々な機能を持つ画像生成タスクにf-DMを適用した。
論文 参考訳(メタデータ) (2022-10-10T18:49:25Z) - Convex Augmentation for Total Variation Based Phase Retrieval [23.66790393154329]
本稿では,全変分正規化に基づく位相探索のための凸拡大手法を提案する。
PhaseLiftのような一般的な凸緩和モデルとは対照的に、我々のモデルは乗算器の半近交互方向修正法によって効率的に解ける。
論文 参考訳(メタデータ) (2022-04-21T13:55:14Z) - A Fourier-based Framework for Domain Generalization [82.54650565298418]
ドメインの一般化は、複数のソースドメインから伝達可能な知識を学習して、未確認のターゲットドメインに一般化することでこの問題に対処することを目的としている。
本稿では、ドメイン一般化のための新しいフーリエに基づく視点を紹介する。
3つのベンチマーク実験により,提案手法は領域一般化のための最先端性能を実現することができることを示した。
論文 参考訳(メタデータ) (2021-05-24T06:50:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。