ReSynthDetect: A Fundus Anomaly Detection Network with Reconstruction
and Synthetic Features
- URL: http://arxiv.org/abs/2312.16470v1
- Date: Wed, 27 Dec 2023 08:40:23 GMT
- Title: ReSynthDetect: A Fundus Anomaly Detection Network with Reconstruction
and Synthetic Features
- Authors: Jingqi Niu, Qinji Yu, Shiwen Dong, Zilong Wang, Kang Dang and Xiaowei
Ding
- Abstract summary: We propose a reconstruction network for modeling normal images, and an anomaly generator that produces synthetic anomalies consistent with the appearance of fundus images.
Our experiments indicate a substantial 9% improvement in AUROC on EyeQ and a significant 17.1% improvement in AUPR on IDRiD.
- Score: 5.655822001453255
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Detecting anomalies in fundus images through unsupervised methods is a
challenging task due to the similarity between normal and abnormal tissues, as
well as their indistinct boundaries. The current methods have limitations in
accurately detecting subtle anomalies while avoiding false positives. To
address these challenges, we propose the ReSynthDetect network which utilizes a
reconstruction network for modeling normal images, and an anomaly generator
that produces synthetic anomalies consistent with the appearance of fundus
images. By combining the features of consistent anomaly generation and image
reconstruction, our method is suited for detecting fundus abnormalities. The
proposed approach has been extensively tested on benchmark datasets such as
EyeQ and IDRiD, demonstrating state-of-the-art performance in both image-level
and pixel-level anomaly detection. Our experiments indicate a substantial 9%
improvement in AUROC on EyeQ and a significant 17.1% improvement in AUPR on
IDRiD.
Related papers
- Spatial-aware Attention Generative Adversarial Network for Semi-supervised Anomaly Detection in Medical Image [63.59114880750643]
We introduce a novel Spatial-aware Attention Generative Adrialversa Network (SAGAN) for one-class semi-supervised generation of health images.
SAGAN generates high-quality health images corresponding to unlabeled data, guided by the reconstruction of normal images and restoration of pseudo-anomaly images.
Extensive experiments on three medical datasets demonstrate that the proposed SAGAN outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2024-05-21T15:41:34Z) - Unsupervised Anomaly Detection via Masked Diffusion Posterior Sampling [8.887775968482208]
diffusion models have shown promising applications for anomaly detection due to their powerful generative ability.
This paper proposes a novel and highly-interpretable method named Masked Diffusion Posterior Sampling (MDPS)
MDPS can achieve state-of-the-art performance in normal image reconstruction quality as well as anomaly detection and localization.
arXiv Detail & Related papers (2024-04-27T13:13:27Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model [59.08735812631131]
Anomaly inspection plays an important role in industrial manufacture.
Existing anomaly inspection methods are limited in their performance due to insufficient anomaly data.
We propose AnomalyDiffusion, a novel diffusion-based few-shot anomaly generation model.
arXiv Detail & Related papers (2023-12-10T05:13:40Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
This work proposes a novel method for generating generic Video-temporal PAs by inpainting a masked out region of an image.
In addition, we present a simple unified framework to detect real-world anomalies under the OCC setting.
Our method performs on par with other existing state-of-the-art PAs generation and reconstruction based methods under the OCC setting.
arXiv Detail & Related papers (2023-11-27T13:14:06Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - Deep Learning-Based Anomaly Detection in Synthetic Aperture Radar
Imaging [11.12267144061017]
Our approach considers anomalies as abnormal patterns that deviate from their surroundings but without any prior knowledge of their characteristics.
Our proposed method aims to address these issues through a self-supervised algorithm.
Experiments are performed to show the advantages of our method compared to the conventional Reed-Xiaoli algorithm.
arXiv Detail & Related papers (2022-10-28T10:22:29Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Regularized Cycle Consistent Generative Adversarial Network for Anomaly
Detection [5.457279006229213]
We propose a new Regularized Cycle Consistent Generative Adversarial Network (RCGAN) in which deep neural networks are adversarially trained to better recognize anomalous samples.
Experimental results on both real-world and synthetic data show that our model leads to significant and consistent improvements on previous anomaly detection benchmarks.
arXiv Detail & Related papers (2020-01-18T03:35:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.