Unsupervised Anomaly Detection via Masked Diffusion Posterior Sampling
- URL: http://arxiv.org/abs/2404.17900v1
- Date: Sat, 27 Apr 2024 13:13:27 GMT
- Title: Unsupervised Anomaly Detection via Masked Diffusion Posterior Sampling
- Authors: Di Wu, Shicai Fan, Xue Zhou, Li Yu, Yuzhong Deng, Jianxiao Zou, Baihong Lin,
- Abstract summary: diffusion models have shown promising applications for anomaly detection due to their powerful generative ability.
This paper proposes a novel and highly-interpretable method named Masked Diffusion Posterior Sampling (MDPS)
MDPS can achieve state-of-the-art performance in normal image reconstruction quality as well as anomaly detection and localization.
- Score: 8.887775968482208
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reconstruction-based methods have been commonly used for unsupervised anomaly detection, in which a normal image is reconstructed and compared with the given test image to detect and locate anomalies. Recently, diffusion models have shown promising applications for anomaly detection due to their powerful generative ability. However, these models lack strict mathematical support for normal image reconstruction and unexpectedly suffer from low reconstruction quality. To address these issues, this paper proposes a novel and highly-interpretable method named Masked Diffusion Posterior Sampling (MDPS). In MDPS, the problem of normal image reconstruction is mathematically modeled as multiple diffusion posterior sampling for normal images based on the devised masked noisy observation model and the diffusion-based normal image prior under Bayesian framework. Using a metric designed from pixel-level and perceptual-level perspectives, MDPS can effectively compute the difference map between each normal posterior sample and the given test image. Anomaly scores are obtained by averaging all difference maps for multiple posterior samples. Exhaustive experiments on MVTec and BTAD datasets demonstrate that MDPS can achieve state-of-the-art performance in normal image reconstruction quality as well as anomaly detection and localization.
Related papers
- pcaGAN: Improving Posterior-Sampling cGANs via Principal Component Regularization [11.393603788068777]
In ill-posed imaging inverse problems, there can exist many hypotheses that fit both the observed measurements and prior knowledge of the true image.
We propose a fast and accurate posterior-sampling conditional generative adversarial network (cGAN) that, through a novel form of regularization, aims for correctness in the posterior mean.
arXiv Detail & Related papers (2024-11-01T14:09:28Z) - GLAD: Towards Better Reconstruction with Global and Local Adaptive Diffusion Models for Unsupervised Anomaly Detection [60.78684630040313]
Diffusion models tend to reconstruct normal counterparts of test images with certain noises added.
From the global perspective, the difficulty of reconstructing images with different anomalies is uneven.
We propose a global and local adaptive diffusion model (abbreviated to GLAD) for unsupervised anomaly detection.
arXiv Detail & Related papers (2024-06-11T17:27:23Z) - Spatial-aware Attention Generative Adversarial Network for Semi-supervised Anomaly Detection in Medical Image [63.59114880750643]
We introduce a novel Spatial-aware Attention Generative Adrialversa Network (SAGAN) for one-class semi-supervised generation of health images.
SAGAN generates high-quality health images corresponding to unlabeled data, guided by the reconstruction of normal images and restoration of pseudo-anomaly images.
Extensive experiments on three medical datasets demonstrate that the proposed SAGAN outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2024-05-21T15:41:34Z) - Evaluation of pseudo-healthy image reconstruction for anomaly detection
with deep generative models: Application to brain FDG PET [3.5250480324981406]
We propose an evaluation procedure based on the simulation of realistic abnormal images to validate pseudo-healthy reconstruction methods.
We apply this framework to the reconstruction of 3D brain FDG PET using a convolutional variational autoencoder.
arXiv Detail & Related papers (2024-01-29T18:02:22Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - Projection Regret: Reducing Background Bias for Novelty Detection via
Diffusion Models [72.07462371883501]
We propose emphProjection Regret (PR), an efficient novelty detection method that mitigates the bias of non-semantic information.
PR computes the perceptual distance between the test image and its diffusion-based projection to detect abnormality.
Extensive experiments demonstrate that PR outperforms the prior art of generative-model-based novelty detection methods by a significant margin.
arXiv Detail & Related papers (2023-12-05T09:44:47Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
This work proposes a novel method for generating generic Video-temporal PAs by inpainting a masked out region of an image.
In addition, we present a simple unified framework to detect real-world anomalies under the OCC setting.
Our method performs on par with other existing state-of-the-art PAs generation and reconstruction based methods under the OCC setting.
arXiv Detail & Related papers (2023-11-27T13:14:06Z) - Masked Autoencoders for Unsupervised Anomaly Detection in Medical Images [5.457150493905064]
We tackle anomaly detection in medical images training our framework using only healthy samples.
We train the anomaly classifier in a supervised manner using as negative samples the reconstruction of the healthy scans.
We compare our method with four state-of-the-art anomaly detection frameworks, namely AST, RD4AD, AnoVAEGAN and f-AnoGAN.
arXiv Detail & Related papers (2023-07-14T09:13:28Z) - Diversity-Measurable Anomaly Detection [106.07413438216416]
We propose Diversity-Measurable Anomaly Detection (DMAD) framework to enhance reconstruction diversity.
PDM essentially decouples deformation from embedding and makes the final anomaly score more reliable.
arXiv Detail & Related papers (2023-03-09T05:52:42Z) - Dual-distribution discrepancy with self-supervised refinement for
anomaly detection in medical images [29.57501199670898]
We introduce one-class semi-supervised learning (OC-SSL) to utilize known normal and unlabeled images for training.
Ensembles of reconstruction networks are designed to model the distribution of normal images and the distribution of both normal and unlabeled images.
We propose a new perspective on self-supervised learning, which is designed to refine the anomaly scores rather than detect anomalies directly.
arXiv Detail & Related papers (2022-10-09T11:18:45Z) - Unsupervised Lesion Detection via Image Restoration with a Normative
Prior [6.495883501989547]
We propose a probabilistic model that uses a network-based prior as the normative distribution and detect lesions pixel-wise using MAP estimation.
Experiments with gliomas and stroke lesions in brain MRI show that the proposed approach outperforms the state-of-the-art unsupervised methods by a substantial margin.
arXiv Detail & Related papers (2020-04-30T18:03:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.